Dark Matter Heating vs. Rotochemical Heating in Old Neutron Stars

Keisuke Yanagi (University of Tokyo)

Based on Koichi Hamaguchi, Natsumi Nagata, KY [arXiv: 1904.04667, 1905.02991]

June 21th, 2019 @ Nagoya Univ.

Introduction/Motivation

Dark matter search

Weakly Interacting Massive Particle (WIMP)

- DM candidate which has standard model weak interaction
- Typical mass range: m ~ 100 GeV 1 TeV

Limitation of DM direct detection

- DM + nucleus \rightarrow DM + nucleus
- Neutrino floor limits ultimate sensitivity
- Insensitive to Inelastic scattering ($\Delta M < 100 \text{ keV}$) $\leftrightarrow \Delta M \sim O(100) \text{ MeV}$

Dark matters accrete in neutron stars

- Consider weakly interacting massive particles (WIMPs)
- WIMPs scatter with nucleons and lose their kinetic energy
- Then they are trapped by a NS, and annihilate to SM particles

[Kouvaris, 0708.2362]

Energy injection

$$L_{\rm WIMP}$$
 = (Energy flux) x
~ $\rho_{\rm DM} v_{\rm DM} \pi b_{\rm max}^2$

(Capture probability) ~ 1 for $\sigma_n \gtrsim 10^{-45} \, {\rm cm}^2$

Dark matter kinetic/mass energy heats NS

DM scattering/annihilation deposits energy in NS

→ Late time heating!

- w/o WIMP : $T_s < 1000 \text{ K} @ t > 10 \text{ Myr}$
- w/ WIMP : $T_s \sim 3000 \text{ K} @ \text{ t} > 10 \text{ Myr}$
- Sensitive to $\Delta M \lesssim 1 \text{ GeV}$

[Kouvaris, 0708.2362 ;Baryakhtar+, 1704.01577]

The observation suggests presence of **other heating mechanisms**

- Old NSs can be hotter than the cooling prediction or DM heating prediction
 - Several old (t > 10 Myr) pulsars have $T_s \sim 10^5 \text{ K}$
 - WIMP cannot heat up a NS to $T_s \sim 10^5$ K
- An old NS is **not always warm**; it sometimes remains cold
 - PSR2144-3933: $T_s < 4 \times 10^4$ K @ t ~ 100 Myr

The observation suggests presence of **other heating mechanisms**

- Old NSs can be hotter than the cooling prediction or DM heating prediction
 - Several old (t > 10 Myr) pulsars have $T_s \sim 10^5 \text{ K}$
 - WIMP cannot heat up a NS to $T_s \sim 10^5$ K
- An old NS is **not always warm**; it sometimes remains cold
 - PSR2144-3933: $T_s < 4 \times 10^4$ K @ t ~ 100 Myr

The observation suggests presence of **other heating mechanisms**

- Old NSs can be hotter than the cooling prediction or DM heating prediction
 - Several old (t > 10 Myr) pulsars have $T_s \sim 10^5 \text{ K}$
 - WIMP cannot heat up a NS to $T_s \sim 10^5$ K
- An old NS is not always warm; it sometimes remains cold
 - PSR2144-3933: $T_s < 4 \times 10^4$ K @ t ~ 100 Myr

Theoretically, several heating mechanisms are suggested

[Gonzalez & Reisenegger, 1005.5699]

Non-equilibrium beta process (rotochemical heating)

- Inevitable for pulsars, our focus
- Superfluid vortex heating
- Decay of magnetic field
- e.t.c...

Maybe responsible, but theoretically less clear...

If these mechanisms keep NS at $T_s \sim 10^5$ K, DM heating may be hidden...

Can we really see the DM heating? If so, we want to clarify the condition!

Outline

- Minimal cooling theory
- Rotochemical heating
- Results
 - We compare theory and observation including rotochemical heating [KY, Koichi Hamaguchi, Natsumi Nagata, arXiv: 1904.04667]
 - We discuss the possibility to search DM under the rotochemical heating [Koichi Hamaguchi, Natsumi Nagata, KY, arXiv: 1905.02991]

Minimal cooling of a neutron star

Basics of NS

- NS core consists of n, p, e, μ
- They are Fermi-degenerate

 $p_{F,n} \sim O(100) \,\mathrm{MeV}$ $p_{F,e,p,\mu} \sim O(10) \,\mathrm{MeV}$

- Birth temperature ~ 10^{11} K, and quickly cools to T < 10^{10} K
- NS is cold system

Nucleon superfluidity in NS

Cooper pairing occurs due to the attractive nuclear force

At $T < T_c^{(N)} \sim 10^{8-9} \,\mathrm{K}$

Superfluid in NS core

- Proton singlet pairing (¹S₀)
- Neutron triplet pairing (³P₂)

Superfluid in NS crust (not important for thermal evolution)

• Neutron singlet pairing (¹S₀)

[[]Figures from Page et al. (2013)]

Energy gap

Once Cooper paring occurs, the energy gap appears in the spectrum

Energy spectrum near Fermi surface

$$\epsilon_N(\mathbf{p}) \simeq \mu_N + \operatorname{sign}(p - p_{F,N}) \sqrt{\Delta_N^2 + v_{F,N}^2 (p - p_{F,N})^2}$$

Pairing gap models

The effects of superfluidity depends on momentum dependence of gap $\Delta_N = \Delta_N(\mathbf{k}_F, T = 0)$

Thermal evolution

Thermal evolution is governed by the energy conservation law

Direct Urca process

Neutrino emission from beta decay and its inverse on Fermi surface

Direct Urca does not operate unless the NS is very heavy

- Nucleons and leptons are strongly degenerate; $p_{\nu} \sim T \ll p_{F,n,p,\ell}$
- Momentum conservation requires

$$p_{F,p} + p_{F,\ell} > p_{F,n}$$

• Since $p_F^3 \propto n$, direct Urca requires **high p, e, µ density**

Modified Urca process

Threshold of direct Urca is relaxed by spectator nucleon

$$n + N \to p + N + \ell + \bar{\nu}_{\ell}$$
$$p + N + \ell \to n + N + \nu_{\ell}$$

• Beta equilibrium is usually assumed: $\mu_n = \mu_p + \mu_\ell$

N = n or p

- Before Cooper pairing: Luminosity = $L_{\nu}^{MU} \propto T^8$
- After Cooper pairing: modified Urca is highly suppressed

$$\epsilon_{\rm F} \longrightarrow f \sim e^{-\Delta_N/T} \text{ for } Q_{M,N\ell} = \int \left[\prod_{j=1}^4 \frac{d^3 p_j}{(2\pi)^3} \right] \frac{d^3 p_\ell}{(2\pi)^3} \frac{d^3 p_\nu}{(2\pi)^3} (2\pi)^4 \delta^4 (P_f - P_i) \cdot \epsilon_{\nu} \cdot \frac{1}{2} \sum_{\rm spin} |\mathcal{M}_{M,N\ell}|^2 \times [f_1 f_2 (1 - f_3)(1 - f_4)(1 - f_\ell) + (1 - f_1)(1 - f_2)f_3 f_4 f_\ell],$$

Cooper pair-breaking and formation (PBF)

The Cooper pairing triggers rapid neutrino emission (called PBF)

- Pair-breaking $[\tilde{N}\tilde{N}] \rightarrow \tilde{N} + \tilde{N}$ (thermal disturbance) Cooper pair Single (quasi-)nucleon \bar{V}
 - **Pair-formation** $\tilde{N} + \tilde{N} \rightarrow [\tilde{N}\tilde{N}] + \nu + \bar{\nu}$

Pair breaking occurs by thermal disturbance \longrightarrow efficient while T ~ Δ

[Flowers et al. (1976)]

PBF dominates L_{ν} for $T < T_c$

Minimal cooling

Minimal cooling paradigm explains many NSs surface temperatures

[Page et al., astro-ph/0403657; Gusakov et al., astro-ph/0404002; Page et al., 0906.1621]

• Direct Urca is not included

Different lines = Different gap/envelope model

- t < 10 100 yr: Equilibrium modified urca $n + N \leftrightarrow p + N + \ell \pm \bar{\nu}_{\ell}$
- 10 100 yr < t < 10⁵ yr: PBF $[\tilde{N}\tilde{N}] \rightarrow \tilde{N}\tilde{N} \quad \tilde{N}\tilde{N} \rightarrow [\tilde{N}\tilde{N}] + \nu\bar{\nu}$
- t > 10⁵ yr : Photon emission $L_{\gamma} = 4\pi R^2 \sigma_B T_s^4$

Minimal cooling

Minimal cooling paradigm explains many NSs surface temperatures

[Page et al., astro-ph/0403657; Gusakov et al., astro-ph/0404002; Page et al., 0906.1621]

• Direct Urca is not included

Different lines = Different gap/envelope model

- t < 10 100 yr: Equilibrium modified urca $n + N \leftrightarrow p + N + \ell \pm \bar{\nu}_{\ell}$
- 10 100 yr < t < 10⁵ yr: PBF $[\tilde{N}\tilde{N}] \rightarrow \tilde{N}\tilde{N} \quad \tilde{N}\tilde{N} \rightarrow [\tilde{N}\tilde{N}] + \nu\bar{\nu}$
- t > 10⁵ yr : Photon emission $L_{\gamma} = 4\pi R^2 \sigma_B T_s^4$

Rotochemical heating

Pulsar spin-down

Spin-down: pulsar is rotating, and its rotation is gradually slowing down $P \sim 10^{-3} - 1 \text{ s}$ $\dot{P} \sim 10^{-20} - 10^{-13}$

• Spin-down is caused by the **magnetic dipole radiation**

$$\frac{d\Omega}{dt} = -k\Omega^3 \longrightarrow \Omega(t) = \frac{2\pi}{\sqrt{P_0^2 + 2P\dot{P}t}}$$
$$k \propto B^2 \propto P\dot{P}$$
$$B \sim 3.2 \times 10^{19} (P\dot{P}/s)^{1/2} \,\mathrm{G}$$

Centrifugal force is continuously decreasing

 \rightarrow NS tries to change local pressure P(r)

- → Number density of each particle has to be rearranged
- → (Hydrostatic) Equilibrium density is time-dependent

$$n_i^{\text{eq}} = n_i^{\text{eq}}(t)$$

$$i = n, p, e, \mu$$

Hydrostatic equilibrium is not guaranteed

Each particle goes to new equilibrium $n_i^{eq}(t)$ by Urca process If (modified) Urca is too slow, it cannot catch up with change of $n_i^{eq}(t)$

Heat production through entropy production

 (Hydrostatic) equilibrium density is changing, so chemical (or beta) equilibrium is also not guaranteed

Measure of departure from beta equilibrium:

$$\eta_{\ell} = \mu_n - \mu_p - \mu_{\ell} = \delta \mu_n - \delta \mu_p - \delta \mu_{\ell}$$

$$\uparrow^{eq}_{\mu_i} = \mu_i^{eq} + \delta \mu_i$$

• Departure from chemical equilibrium generates heat

$$C\frac{dT^{\infty}}{dt} = -L_{\nu}^{\infty} - L_{\gamma}^{\infty} + L_{H}^{\infty}$$

$$L_{H}^{\infty} = \sum_{\ell=e,\mu} \sum_{N=n,p} \int dV \eta_{\ell} \cdot \Delta \Gamma_{M,N\ell} e^{2\Phi(r)}$$

$$dE^{\infty} = T^{\infty}dS + \sum_{i=n,p,e,\mu} \mu_i^{\infty}dN_i = -(L_{\nu}^{\infty} + L_{\gamma}^{\infty})dt$$

Heat production through entropy production

 (Hydrostatic) equilibrium density is changing, so chemical (or beta) equilibrium is also not guaranteed

Measure of departure from beta equilibrium:

$$\eta_{\ell} = \mu_n - \mu_p - \mu_{\ell} = \delta \mu_n - \delta \mu_p - \delta \mu_{\ell}$$

$$\uparrow^{eq}_{\mu_i} = \mu_i^{eq} + \delta \mu_i$$

• Departure from chemical equilibrium generates heat

Effect of superfluidity

Nucleon superfluidity generates threshold [Petrovich & Reisenegger, 0912.2564]

$$\Delta_{\rm th} = \min\{3\Delta_n + \Delta_p, \Delta_n + 3\Delta_p\}$$

 $\eta_{\ell} > \Delta_{\mathrm{th}}$: heating begins

Larger $\Delta \sim \text{larger } \eta \rightarrow \text{hotter NS}$

Previous work incorporates only neutron triplet pairing [González-Jiménez et al, 1411.6500] We include both neutron and proton pairing

Rotochemical heating vs. observation

Two categories of observed pulsars

<u>Ordinary pulsars and XDINSs</u> $P \sim 1 - 10 \text{ s}$, $\dot{P} \sim 10^{-(15-13)}$

- Ordinary pulsars : most NSs belong to this class
- XDINSs (X-ray dim Isolated Neutrons Stars) : large magnetic field, thought to be remnants of magneter

<u>Millisecond pulsars</u> $P \sim 1 \,\mathrm{ms}$, $\dot{P} \sim 10^{-20}$

• Millisecond pulsars : small rotational period and its derivative, formed by recycle of a binary system

$$B \sim 3.2 \times 10^{19} \left(\frac{P\dot{P}}{s}\right)^{1/2} \,\mathrm{G}$$

The profile of pairing gap is one major source of uncertainty

 $\Delta_{\rm th} = \min\{3\Delta_n + \Delta_p, \Delta_n + 3\Delta_p\}$

- Large gap delays the beginning of rotochemical heating
- Heating power is stronger for larger gap

Results

Observed pulsars are explained for various choice of gap models

Ordinary pulsars & XDINSs

Results

Observed pulsars are explained for various choice of gap models

DM heating vs. rotochemical heating

DM heating rate

Rate of DM hitting the NS

 $\dot{N} \simeq \pi b_{\rm max}^2 v_{\rm DM} (\rho_{\rm DM}/m_{\rm DM})$

Heating luminosity

DM heating effect is visible if the initial period is sufficiently large!

Ordinary pulsar: P = 1 s $\dot{P} = 10^{-15}$

Uncertainty from superfluid gap models

- Critical P₀ depends on the choice of gap models
- (DM heating) >> (rotochemical heating) for $P_0 \gtrsim 100 \,\mathrm{ms}$ indep. of gap models
- Recent studies of NS birth period suggest $P_0 = O(100)$ ms

[Popov & Turolla, 1204.0632; Noutsos et.al., 1301.1265; Igoshev & Popov, 1303.5258; Faucher-Giguere & Kaspi, astro-ph/0512585; Popov et al., 0910.2190; Gullo´n et al., 1406.6794, 1507.05452; Mu¨ller et al., 1811.05483]

Summary

Summary

- It is known that DM heating can heat up a old NS
- We point out that DM heating may be hidden by other NS heating mechanisms
- Among proposed heating mechanisms, rotochemical heating is inevitable for any pulsar
- We compare the prediction of rotochemical heating to observations including both neutron and proton pairing gaps
- We then find that if the initial spin period is long enough, DM heating is stronger than rotochemical heating

Backup

Millisecond pulsars

Can we explian hot MSPs?

- Two old hot MSPs are explained for various choice of gap models
- Including both proton and neutron gap enhances heating

[KY, Koichi Hamaguchi, Natsumi Nagata, arXiv: 1904.04667]

Ordinary pulsars and XDINSs

Can the same setup explain other NS temperatures? • P = 1 s.

neutron: c, proton: CCDK, $P_0 = 1$ ms neutron: a, proton: CCDK, $P_0 = 1$ ms $\Delta M/M = 10^{-15}$ $\Delta M/M = 10^{-15}$ $\Delta M/M = 10^{-7}$ -- $\Delta M/M = 10^{-7}$ 10⁶ 10⁶ $1.8 M_{\odot}$ $1.4 M_{\odot}$ ∑ ⁸ ∽ 10⁵ $1.4 M_{\odot}$ 10⁵ $1.8 M_{\odot}$ 10⁴ – 10⁴ 10⁴ 🖵 10⁹ 10⁵ 10⁶ 107 10⁸ 10⁵ 10⁶ 10^{7} 10⁸ 10^{9} t [yrs] t [yrs]

- Many ordinary pulsars and XDINSs are also explained
- XDINSs are warmer, but may be explained by systematic uncertainties or heating caused by strong magnetic field

• $\dot{P} = 1 \times 10^{-15}$.

Initial spin period is a key parameter

 $P_0 = 10 \, {\rm ms}$

[[]KY, Koichi Hamaguchi, Natsumi Nagata, arXiv: 1904.04667]

- Heating is weakened for longer initial period
- Old and cold NS is explained by assuming they had long initial period

Threshold of heating

Superfluidity makes threshold for rotochemical heating

For simplicity, consider direct Urca: $n \rightarrow p + e + \bar{\nu}_e$ $p + e \rightarrow n + \nu_e$

For modified Urca $\Delta_{th} = \min\{3\Delta_n + \Delta_p, \Delta_n + 3\Delta_p\}$

Neutron star envelope

Envelope: composed of light elements (H, He, C,...) and heavy elements (Fe)

More accurate relation is available [Potekhin et al. (1997)]

