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Introduction/Motivation



Limitation of DM direct detection 
• DM + nucleus → DM + nucleus 
• Neutrino floor limits ultimate sensitivity 
• Insensitive to Inelastic scattering (ΔM < 100 keV)

Dark matter search

Weakly Interacting Massive Particle (WIMP) 
• DM candidate which has standard model weak interaction  
• Typical mass range: m ~ 100 GeV - 1 TeV
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Figure 4: Current status of direct dark matter searches results and sensitivity of future experiments (from [24]). Shaded bounded areas
represent claims for dark matter observations or regions of interest compatible with observation of a few events that could be attributed to
dark matter interactions. Continuous lines show the exclusion curves by past experiments. Dashed lines show the projected sensitivity of
future experiments based on various assumptions. The red dashed line shows the sensitivity of DarkSide-G2 for zero detected events in 18
tons-years.

the goal of 0.1 n/(unit × yr) and is completing R&D towards
its use in ultraradioclean feedthroughs.

6.2. Underground Argon Distillation. To extract low radioac-
tivity underground argon, a large vacuum-pressure swing
adsorption (VPSA) plant was installed in 2009 at Kinder
Morgan Doe Canyon CO2 facility in southwestern Colorado
[36]. This accepts feed CO2 gas with 600 ppm of Ar and
produces an output stream of 4%Ar in a He and N2 mixture.
To date theVPSAplant has extractedmore than 100 kg ofUAr
and it continues to extract it at a rate of about 0.5 kg/day.

The UAr collected in Colorado is shipped to Fermilab
for further purification, using a complex purification system
composed of many units, whose most important unit is a
cryogenic distillation column [37]. The final obtained UAr
has a contamination of 39Ar lower than 0.65% compared to
that in AAr [25]. At this level the DarkSide-G2 experiment
will be able to operate with a very limited (<5%) fraction of
events in pile-up.

The goal for DarkSide-G2 is to reach a production of
50 kg/day: to meet the goal the DarkSide Collaboration is

teaming with KinderMorgan and Air Products. Air Products
will make provisions to produce for the DarkSide-G2 col-
laboration a stream of N2/UAr, originating from the tail gas
of their He extraction plant, which can be treated with a
cryogenic distillation column to produce detector quality
UAr at the desired rate. Final separation of N2 from UAr will
be performed directly at the Kinder Morgan Doe Canyon
facility in Cortez by a new cryogenic distillation column
based on the successful design of the unit currently operating
at FNAL (the present distillation column at Fermilab has
demonstrated the ability to separate a 40–60 Ar-N mix at a
rate of 20 kg/day).

7. Sensitivity

In order to observe a signal rate of the order of 1 event
per ton per year (assuming a cross section of 10−47 cm2), an
exceptional background reduction is needed.

The sources of background are "/# giving an electron
recoil misidentified as a nuclear recoil and cosmogenic or
radiogenic neutrons that produce a nuclear recoil which can

χ0

nucleus

χ±

W±

ΔM ∼ O(100) MeV
for pure Higgsino/Wino



Dark matters accrete in neutron stars

• Consider weakly interacting massive particles (WIMPs) 

• WIMPs scatter with nucleons and lose their kinetic energy 

• Then they are trapped by a NS, and annihilate to SM particles
[Kouvaris, 0708.2362]

∼ 1 for σn ≳ 10−45 cm2∼ ρDMvDMπb2
max

(Energy flux)      x      (Capture probability)LWIMP =

b

WIMP

NS

gravity

weak int.

annihilation
Energy injection



Dark matter kinetic/mass energy heats NS

Neutrino emission

Photon emission

Ts ~ 3000 K by DM heating 
(balance btw. photon cooling and DM heating)

DM scattering/annihilation deposits energy in NS

Different lines correspond to different NS models

• w/o WIMP : Ts < 1000 K @ t > 10 Myr 
• w/ WIMP : Ts ~ 3000 K @ t > 10 Myr 
• Sensitive to [Kouvaris, 0708.2362 ;Baryakhtar+, 1704.01577]

Late time heating!

Standard cooling scanario vs. DM heating

ΔM ≲ 1 GeV



• Old NSs can be hotter than the cooling prediction or DM heating prediction 
- Several old (t > 10 Myr) pulsars have Ts ~ 105 K 

- WIMP cannot heat up a NS to Ts ~ 105 K 

• An old NS is not always warm; it sometimes remains cold 
- PSR2144-3933: Ts < 4×104 K @ t ~ 100 Myr

Can we really see DM heating?

The observation suggests presence of other heating mechanisms
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Can we really see DM heating?

• Non-equilibrium beta process (rotochemical heating) 

• Superfluid vortex heating 

• Decay of magnetic field 

• e.t.c…

Theoretically, several heating mechanisms are suggested
[Gonzalez & Reisenegger, 1005.5699]

Can we really see the DM heating?  If so, we want to clarify the condition!

Maybe responsible, but theoretically less clear…

Inevitable for pulsars, our focus

If these mechanisms keep NS at Ts ~ 105 K, DM heating may be hidden…



Outline

• Minimal cooling theory 

• Rotochemical heating 

• Results 
- We compare theory and observation including rotochemical 

heating 
- We discuss the possibility to search DM under the rotochemical 

heating

[KY, Koichi Hamaguchi, Natsumi Nagata, arXiv: 1904.04667]

[Koichi Hamaguchi, Natsumi Nagata, KY, arXiv: 1905.02991]



Minimal cooling of a neutron star



Basics of NS

• NS core consists of n, p, e, μ 

• They are Fermi-degenerate 

• Birth temperature ~ 1011 K, and 

quickly cools to T < 1010 K 

• NS is cold system

pF,n ∼ O(100) MeV crust

core
~ 1 km

~ 10 km

n, p, e, μ

nucleus, e, n

pF,e,p,μ ∼ O(10) MeV



Nucleon superfluidity in NS
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Figure 4: Left panel: Possible spin-angular momentum combinations for
Cooper-pairs. Right panel: Phase shifts for N-N scattering as a function of
the laboratory energy (middle axis) or the neutron Fermi energy and density
for a neutron star interior (lower axis). Adapted from [21].

that permit the presence of Cooper pairs (and hence a gap �(T )), states with
energy ✏ � ✏F +� can be populated. However, in contrast to the smooth filling
of levels above ✏F in the case of a normal Fermi liquid, the presence of the
2�(T ) gap in the spectrum implies that the occupation probability is strongly
suppressed by a Boltzmann-like factor ⇠ exp[�2�(T )/kBT ]. As a result, both
the specific heat of paired particles and the neutrino emissivity of all processes
in which they participate are strongly reduced.

The phase transition

The transition to the superfluid/superconducting state through pairing à la
BCS is usually a second order phase transition and the gap �(T ) is its order
parameter (see central panel of Fig. 6). Explicitly, �(T ) = 0 when T > Tc,
the critical temperature, and, when T drops below Tc, �(T ) grows rapidly but
continuously, with a discontinuity in its slope at T = Tc. There is no latent heat
but a discontinuity in specific heat. (Examples: superfluid $ normal fluid; fer-
romagnetic $ paramagnetic.) In the BCS theory, which remains approximately
valid for nucleons, the relationship between the zero temperature gap and Tc is

�(T = 0) ' 1.75 kBTc . (17)

In a first order phase transition there is a discontinuous change of �(T ) at Tc

and the transition occurs entirely at Tc (see left panel of Fig. 6). There is a latent
heat due to the entropy di↵erence between the two states. (Examples: solid $

liquid; liquid $ gas below the critical point.) In a smooth state transition there

13

Cooper pairing occurs due to the attractive nuclear force

Superfluid in NS core 

• Proton singlet pairing (1S0) 

• Neutron triplet pairing (3P2)
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energy ✏ � ✏F +� can be populated. However, in contrast to the smooth filling
of levels above ✏F in the case of a normal Fermi liquid, the presence of the
2�(T ) gap in the spectrum implies that the occupation probability is strongly
suppressed by a Boltzmann-like factor ⇠ exp[�2�(T )/kBT ]. As a result, both
the specific heat of paired particles and the neutrino emissivity of all processes
in which they participate are strongly reduced.

The phase transition

The transition to the superfluid/superconducting state through pairing à la
BCS is usually a second order phase transition and the gap �(T ) is its order
parameter (see central panel of Fig. 6). Explicitly, �(T ) = 0 when T > Tc,
the critical temperature, and, when T drops below Tc, �(T ) grows rapidly but
continuously, with a discontinuity in its slope at T = Tc. There is no latent heat
but a discontinuity in specific heat. (Examples: superfluid $ normal fluid; fer-
romagnetic $ paramagnetic.) In the BCS theory, which remains approximately
valid for nucleons, the relationship between the zero temperature gap and Tc is

�(T = 0) ' 1.75 kBTc . (17)

In a first order phase transition there is a discontinuous change of �(T ) at Tc

and the transition occurs entirely at Tc (see left panel of Fig. 6). There is a latent
heat due to the entropy di↵erence between the two states. (Examples: solid $

liquid; liquid $ gas below the critical point.) In a smooth state transition there
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Superfluid in NS crust (not important for thermal evolution) 

• Neutron singlet pairing (1S0) [Figures from Page et al. (2013)]

T < T (N)
c ∼ 108−9 K
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Energy gap

Once Cooper paring occurs, the energy gap appears in the spectrum
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Figure 5: Comparison of quasi-particle spectra, ✏(k), for a normal and a super-
fluid Fermi liquid. The reorganization of particles at ✏ ⇠ ✏F into Cooper pairs
results in the development a gap 2� in the spectrum so that no particle can
have an energy between ✏F �� and ✏F +�.
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Figure 6: Temperature evolution of the state of a system parametrized by an
“order” parameter, �(T ).

is a continuous change of �(T ) with no critical temperature (see the right panel
of Fig. 6). (Examples: liquid $ gas above the critical point; atomic gas $

plasma.)

A simple example

A simple model can illustrate the di�culty in calculating pairing gaps. Con-
sider a dilute Fermi gas with a weak, attractive, interaction potential U . The
interaction is then entirely described by the corresponding scattering length5 , a,
which is negative for an attractive potential. In this case, the model has a single
dimensionless parameter, |a|kF , and the dilute gas corresponds to |a|kF ⌧ 1.
Assuming the pairing interaction is just the bare interaction U (which is called
the BCS approximation), the gap equation at T = 0 can be solved analytically,

5The scattering length a is related to U by a = (m/4⇡h̄2)U0 with Uk =
R
d3r exp(ik ·

r)U(r).

14

ϵN(p) ≃ μN + sign(p − pF,N) Δ2
N + v2

F,N(p − pF,N)2

Energy spectrum near Fermi surface

No particle excitation

f(k) =
1

e(ϵ(k)−μ)/T + 1

[Figures from Page et al. (2013)]



Pairing gap models

The effects of superfluidity depends on momentum dependence of gap
ΔN = ΔN(kF, T = 0)
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Figure 11: Some theoretical predictions of Tc and �, vs proton kF , for the
proton 1S0 gap in �-equilibrium uniform neutron-proton matter. The value of
kF corresponding to the transition from the crust to the core is indicated: values
on the right of this line correspond to the neutron star core but values on the
left are not realized since protons in the crust are confined within nuclei which
are finite size systems while this figure presents results for infinite matter. On
the top margin are marked the values of the proton kF at the center of a 1.0,
1.4, 1.8, and 2.0 M� star built with the APR EOS [16]. See text for description.

BCS for the proton 1S0 gap. Among the latter, we show results from [46]:
these authors used either only two body forces in the interaction kernel, curve
“BS2BF”, or two body forces supplemented by the inclusion of three body forces,
curve “BS2BF+3BF” which shows that three body forces are repulsive in the 1S0
channel. These “BS” results also include e↵ects of medium polarization. Recall
that for the 1S0 pairing of neutrons in pure neutron matter, polarization has a
screening e↵ect and quenches the gap. However, in neutron star matter, where
the medium consists mostly of neutrons, the strong np-correlations result in
medium polarization inducing anti-screening [47] for the 1S0 pairing of protons.

The anisotropic
3
P-F2 neutron (and proton) gap

The 1S0 neutron gap vanishes at densities close to the crust-core transition
and the dominant pairing for neutrons in the core occurs in the mixed 3P-F2

channel. Uncertainties in the actual size and the range of density in which
this gap persists are, however, considerable. As previously mentioned, a major
source of uncertainty is the fact that even the best models of the N-N interaction
in vacuum fail to reproduce the measured phase shift in the 3P2 channel [48].
Also significant are the e↵ects of the medium on the kernel and 3BF, even at

21

the level of the BCS approximation. It was found in [49] that 3BF at the Fermi
surface are strongly attractive in the 3P-F2 channel in spite of being repulsive in
the bulk. Moreover, due to medium polarization a long-wavelength tensor force
appears that is not present in the interaction in vacuum and results in a strong
suppression of the gap [50].
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Figure 12: Left panel: some theoretical predictions of Tc for the neutron 3P-F2

gap in uniform pure neutron and �-equilibrium matter. See text for description.
Right panel: some phenomenological models of Tc for the neutron 3P-F2 gap
used in neutron star cooling simulations. Models “a”, “b”, and “c” are from
[51] and [52], model “a2” from [53]. On the top margin are marked the values
of kFn at the center of a 1.0, 1.4, 1.8, and 2.0 M� star built with the APR EOS
[16].

Figure 12 shows examples of theoretical predictions of Tc for the neutron
3P-F2 gap. The three dotted lines show some of the first published models:
“HGRR” from [54], “T” from [55] and “AO” from [29]. The four continuous
lines show results of models from [48] calculated using the Nijmegen II (“NijII”),
Nijmegen I (“NijI”), CD-Bonn (“CDB”), and Argonne V18 (“AV18”) potentials
(displayed values are taken from the middle panel of Figure 4 of [48]). The
results of these four models start to diverge at kFn above 1.8 fm�1 and illustrate
the failure of all four N-N interactions models to fit the 3P2 laboratory phase-
shifts above Elab ' 300 MeV. All of these calculations were performed for pure
neutron matter using the BCS approximation.

In the case of the 1S0 gap, medium polarization is known to result in screen-
ing and to reduce the size of the gap. In the case of a 3P2 gap, polarization
with central forces is expected to result in anti-screening and to increase the
size of the gap. However, Schwenk & Friman [50] showed that spin-dependent
non-central forces do the opposite and strongly screen the coupling in the 3P2

channel, resulting in a Tc lower than 107 K: this “SF” value is indicated in the

22

Proton 1S0 pairing models Neutron 3P2 pairing models

[Figures from Page et al. (2013)]
T (p)

c = O(1) × 109 K T (n)
c ∼ 108 − 109 K

ΔN(kF, T = 0) ≃ 1.764 kBT (N)
c

ΔN(kF, cos θ = 0,T = 0) ≃ 1.188 kBT (N)
c



Neutrino emission Photon emission

Thermal evolution

C
dT
dt

= − Lν − Lγ

Thermal evolution is governed by the energy conservation law

Heat capacity (n, p, e, μ) Neutrino luminosity Photon luminosity:
Lγ = 4πR2σBT4

s



Neutrino emission
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If the direct Urca process can occur, the neutrino emission is 

significantly increased. 

pF ≫ T, mn−mp

Direct Urca process

n → p + ℓ + ν̄ℓ p + ℓ → n + νℓ ℓ = e, μ

Neutrino emission from beta decay and its inverse on Fermi surface

• Nucleons and leptons are strongly degenerate; 

• Momentum conservation requires 

• Since             , direct Urca requires high p, e, μ density

pν ∼ T ≪ pF,n,p,ℓ

pF,p + pF,ℓ > pF,n
p3

F ∝ n

Direct Urca does not operate unless the NS is very heavy

(                  for APR EOS)M ≳ 2 M⊙

⃗p F,n

⃗p F,p⃗p F,ℓ

allowed

LDU
ν ∝ T6



• Before Cooper pairing: Luminosity = LMU
ν ∝ T8

Modified Urca process

n + N → p + N + ℓ + ν̄ℓ

p + N + ℓ → n + N + νℓ

Neutrino emission
e!

_
!
_

e!
_

n

np

n

p

e e !

n

Modified Urca BremsstrahlungDirect Urca

n n n n

nn

These processes occur near the Fermi surface.

If the direct Urca process can occur, the neutrino emission is 

significantly increased. 

pF ≫ T, mn−mp

π

Threshold of direct Urca is relaxed by spectator nucleon

N = n or p

• After Cooper pairing: modified Urca is highly suppressed

f ∼ e−ΔN /T

k

ε

Normal Fermi Liquid Superfluid Fermions

ε

F
k

ε

2∆

ε(k)

k
F

(k)

ε

k

F εF

Figure 5: Comparison of quasi-particle spectra, ✏(k), for a normal and a super-
fluid Fermi liquid. The reorganization of particles at ✏ ⇠ ✏F into Cooper pairs
results in the development a gap 2� in the spectrum so that no particle can
have an energy between ✏F �� and ✏F +�.
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Figure 6: Temperature evolution of the state of a system parametrized by an
“order” parameter, �(T ).

is a continuous change of �(T ) with no critical temperature (see the right panel
of Fig. 6). (Examples: liquid $ gas above the critical point; atomic gas $

plasma.)

A simple example

A simple model can illustrate the di�culty in calculating pairing gaps. Con-
sider a dilute Fermi gas with a weak, attractive, interaction potential U . The
interaction is then entirely described by the corresponding scattering length5 , a,
which is negative for an attractive potential. In this case, the model has a single
dimensionless parameter, |a|kF , and the dilute gas corresponds to |a|kF ⌧ 1.
Assuming the pairing interaction is just the bare interaction U (which is called
the BCS approximation), the gap equation at T = 0 can be solved analytically,

5The scattering length a is related to U by a = (m/4⇡h̄2)U0 with Uk =
R
d3r exp(ik ·

r)U(r).
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μn = μp + μℓ• Beta equilibrium is usually assumed:

local temperature in general depends on the position, especially for a very young NS. It is however
known [1–3] that the typical timescale of thermal relaxation in a NS is ⇠ 102�3 yr, and thus a
NS with the age t & 104 yr can safely be regarded as isothermal. Since our main focus is on old
NSs, in this work, we assume that NSs have already reached an isothermal state. In this case, the
red-shifted internal temperature defined by T

1
⌘ T(r)e

�(r) is constant throughout the NS core, with
e

2�(r) = �gtt(r) the time component of the metric. The evolution of this red-shifted temperature is
then governed by

C
dT

1

dt
= �L

1

⌫ � L
1

� + L
1

H
, (1)

where L
1
⌫ and L

1
� are the red-shifted luminosities of neutrino and photon emissions, respectively,

C denotes the total heat capacity of the NS, and L
1

H
is the source of heating if exists. In Sec. 2.1, we

review the minimal cooling theory, assuming chemical equilibrium among nucleons and leptons.
In this case, NSs just cool down due to the first two terms in the right-handed side of Eq. (1), with
L
1

H
= 0. We then discuss in Sec. 2.2 the internal heating e�ect caused by the non-equilibrium beta

processes in rotating pulsars, which yields a non-zero L
1

H
. In Sec. 2.3, we summarize the pairing

gap models for nucleon superfluidity used in this work, which a�ect the evaluation of L
1
⌫ and L

1

H

significantly.

2.1 Minimal cooling
The minimal cooling [4, 5] is a successful paradigm that can explain many NS surface temperatures.
In this scenario, the energy loss of a NS for t . 105 yr is caused by the neutrino emission from
the core, whose dominant processes are the modified Urca and PBF: L

1
⌫ ' L

1

⌫,M + L
1

⌫,PBF. The fast
neutrino emission processes such as the direct Urca process are not included. At later times, the
surface photon emission becomes the dominant source for the NS cooling. In this subsection, we
give a brief review on these processes.

The modified Urca process consists of the reactions

n + N1 ! p + N2 + ` + ⌫̄` , (2)
p + N2 + ` ! n + N1 + ⌫` , (3)

where N1 = N2 = n (neutron branch) or N1 = N2 = p (proton branch) and ` = e, µ. The emissivity,
the energy loss rate per unit time and volume, of this process is given by

QM,N` =

π  4÷
j=1

d
3
pj

(2⇡)3

�
d

3
p`

(2⇡)3
d

3
p⌫

(2⇡)3
(2⇡)4�4(Pf � Pi) · ✏⌫ ·

1
2

’
spin

|MM,N` |
2

⇥ [ f1 f2(1 � f3)(1 � f4)(1 � f`) + (1 � f1)(1 � f2) f3 f4 f`] , (4)

where j = 1, 2, 3, 4 denote the nucleons n, N1, p, N2, respectively, �4(Pf �Pi) the energy-momentum
conserving delta function, 1/2⇥

Õ
spin |MM,N` |

2 the matrix element summed over all the particles’
spins with the symmetry factor, and f ’s the Fermi-Dirac distribution functions. In the NS core,
nucleons and charged leptons are highly degenerate, and thus only those in a thermal shell near

4

for



Cooper pair-breaking and formation (PBF)

The Cooper pairing triggers rapid neutrino emission (called PBF)
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Figure 17: Left panel: Feynman diagram for ⌫⌫ emission from the formation
of a nn Cooper pair (pair breaking and formation, PBF, process). Right panel:
control functions RPBF for the PBF process.

Temperature dependence of the PBF neutrino emissivity

The temperature dependence of the PBF process (left panel of Fig. 17) can be
ascertained from Eq. (45) according to the following T -power counting:

✏
PBF

/ T
3
· T

3
· T · 1 ·

1

T
·R(�/T ) · T = T

7
R(�/T ) , (47)

where the two T
3 and the first T factors arise from the phase space integrations

of the neutrino pair and the first participating nucleon, respectively. The fac-
tor 1 results from the phase space integration of the second nucleon. As there
are only two degenerate fermions in this process (in contrast to the Urca and
bremsstrahlung processes that involve 3, 4, or 5 degenerate fermions), the mo-
menta of the neutrino pair and the first nucleon are chosen the momentum of
the second nucleon is fixed by the three-momentum conserving delta function.
Thus, this second nucleon does not introduce any T dependence. The T

�1 de-
pendence arises from the energy conserving delta function. The last T factor is
from the neutrino pair’s energy, whereas the T and � dependence of the matrix
element of the reaction are included in the function R(�/T ), which is shown in
the right panel of Fig. 17.

An alternative way of looking at the PBF process is simply as an interband
transition of a nucleon [117]. Considering the particle spectrum in a paired state
(the right panel of Fig. 5), the lower branch (with ✏ < ✏F ��) corresponds to
paired particles whereas the upper branch to excited ones, i.e., the “broken
pair” leaves a hole in the lower branch. A transition of a particle from the
upper branch to a hole in the lower branch corresponds to the formation of a
Cooper pair.
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Ñ + Ñ → [ÑÑ] + ν + ν̄

[ÑÑ] → Ñ + Ñ

Cooper pair Single (quasi-)nucleon

• Pair-breaking (thermal disturbance)

• Pair-formation
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Figure 5: Comparison of quasi-particle spectra, ✏(k), for a normal and a super-
fluid Fermi liquid. The reorganization of particles at ✏ ⇠ ✏F into Cooper pairs
results in the development a gap 2� in the spectrum so that no particle can
have an energy between ✏F �� and ✏F +�.
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Figure 6: Temperature evolution of the state of a system parametrized by an
“order” parameter, �(T ).

is a continuous change of �(T ) with no critical temperature (see the right panel
of Fig. 6). (Examples: liquid $ gas above the critical point; atomic gas $

plasma.)

A simple example

A simple model can illustrate the di�culty in calculating pairing gaps. Con-
sider a dilute Fermi gas with a weak, attractive, interaction potential U . The
interaction is then entirely described by the corresponding scattering length5 , a,
which is negative for an attractive potential. In this case, the model has a single
dimensionless parameter, |a|kF , and the dilute gas corresponds to |a|kF ⌧ 1.
Assuming the pairing interaction is just the bare interaction U (which is called
the BCS approximation), the gap equation at T = 0 can be solved analytically,

5The scattering length a is related to U by a = (m/4⇡h̄2)U0 with Uk =
R
d3r exp(ik ·

r)U(r).
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Pair breaking occurs by thermal disturbance 
           efficient while T ~ Δ

PBF dominates      for Lν T < Tc

[Flowers et al. (1976)]

ν
ν̄



Minimal cooling

• Direct Urca is not included 

• t < 10 - 100 yr: Equilibrium modified urca 

• 10 - 100 yr < t < 105 yr: PBF 

• t > 105 yr : Photon emission

n + N ↔ p + N + ℓ ± ν̄ℓ

[ÑÑ ] → ÑÑ ÑÑ → [ÑÑ ] + νν̄

Lγ = 4πR2σBT4
s

Minimal cooling paradigm explains many NSs surface temperatures
[Page et al., astro-ph/0403657; Gusakov et al., astro-ph/0404002; Page et al., 0906.1621]

Different lines = Different gap/envelope model



Minimal cooling

• Direct Urca is not included 

• t < 10 - 100 yr: Equilibrium modified urca 

• 10 - 100 yr < t < 105 yr: PBF 

• t > 105 yr : Photon emission

n + N ↔ p + N + ℓ ± ν̄ℓ

[ÑÑ ] → ÑÑ ÑÑ → [ÑÑ ] + νν̄

Lγ = 4πR2σBT4
s

Minimal cooling paradigm explains many NSs surface temperatures
[Page et al., astro-ph/0403657; Gusakov et al., astro-ph/0404002; Page et al., 0906.1621]

Different lines = Different gap/envelope model

Minimal cooling cannot explain these NSs



Rotochemical heating



Pulsar spin-down

• Spin-down is caused by the magnetic dipole radiation

P ∼ 10−3 − 1 s ·P ∼ 10−20 − 10−13
Spin-down: pulsar is rotating, and its rotation is gradually slowing down

dΩ
dt

= − kΩ3

• Centrifugal force is continuously decreasing 

→ NS tries to change local pressure 

→ Number density of each particle has to be rearranged 

→ (Hydrostatic) Equilibrium density is time-dependent

Ω(t) =
2π

P2
0 + 2P ·Pt

B ∼ 3.2 × 1019(P ·P/s)1/2 G
k ∝ B2 ∝ P ·P

neq
i = neq

i (t)
i = n, p, e, μ

Pressure Centrifugal force

Gravity

P(r)



Hydrostatic equilibrium is not guaranteed

ni = neq
i + δni

δni ≠ 0

neq
i

ni

t

modified Urca

spin-down

n + N ↔ p + N + ℓ ± ν̄ℓ

Each particle goes to new equilibrium           by Urca process  
If (modified) Urca is too slow, it cannot catch up with change of

neq
i (t)

(Schematic picture)

neq
i (t)



Heat production through entropy production

L∞
H = ∑

ℓ=e,μ
∑

N=n,p
∫ dV ηℓ ⋅ ΔΓM,Nℓe2Φ(r)

dE∞ = T∞dS + ∑
i=n,p,e,μ

μ∞
i dNi = − (L∞

ν + L∞
γ )dt

• (Hydrostatic) equilibrium density is changing, so chemical (or beta) equilibrium is 
also not guaranteed

ηℓ = μn − μp − μℓ = δμn − δμp − δμℓ

μi = μeq
i + δμi

Measure of departure from beta equilibrium:

• Departure from chemical equilibrium generates heat

C
dT∞

dt
= − L∞

ν − L∞
γ + L∞

H
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H



Effect of superfluidity

Nucleon superfluidity generates threshold

Δth = min{3Δn + Δp, Δn + 3Δp}

ηℓ > Δth : heating begins
Larger Δ ~ larger η → hotter NS

Previous work incorporates only neutron triplet pairing 
We include both neutron and proton pairing

[Petrovich & Reisenegger, 0912.2564]

[González-Jiménez et al, 1411.6500]



Rotochemical heating vs. observation



Two categories of observed pulsars

• Ordinary pulsars：most NSs belong to this class

• Millisecond pulsars : small rotational period and its derivative, formed by recycle of a binary system

• XDINSs (X-ray dim Isolated Neutrons Stars) : large magnetic field, thought to be remnants of magneter

P ∼ 1 − 10 s , ·P ∼ 10−(15−13)

P ∼ 1 ms , ·P ∼ 10−20

B ∼ 3.2 × 1019 ( P ·P
s )

1/2

G

Ordinary pulsars and XDINSs

Millisecond pulsars



Gap models we use

The profile of pairing gap is one major source of uncertainty

• Large gap delays the beginning of rotochemical heating 
• Heating power is stronger for larger gap

Δth = min{3Δn + Δp, Δn + 3Δp}



Results

Observed pulsars are explained for various choice of gap models

MSP Ordinary pulsars & XDINSs

P = 5.8 ms
·P = 5.7 × 10−20

P = 1 s
·P = 1 × 10−15



Results

Observed pulsars are explained for various choice of gap models

MSP Ordinary pulsars & XDINSs

P = 5.8 ms
·P = 5.7 × 10−20

P = 1 s
·P = 1 × 10−15

Increasing P0 significantly suppresses 
rotochemical heating



DM heating vs. rotochemical heating



DM heating rate

bR

WIMP

NS

weak int.

annihilation

Rate of DM hitting the NS
·N ≃ πb2

maxvDM(ρDM/mDM)

bmax = R(vesc /vDM)e−Φ(R) ≫ R

vesc = 2GM/R ∼ O(0.1) ≫ vDM

vDM

vesc

L∞
H = e2Φ(R) ·NmDM[χ + (γ − 1)]

Heating luminosity

1

1 − v2
escfraction of ann. energy into heat

= 1 for all annihilation into heat 
= 0 for no annihilation or all DM ann. into (e.g.) neutrinos

gravitational redshift factor

{

DM accretion



DM heating vs. rotochemical heating

DM heating effect is visible if the initial period is sufficiently large!

Ordinary pulsar: P = 1 s ·P = 10−15

NS pulsation stops

We can see the DM effect!P0 ≲ 7 ms : DM heating < rotochemical haeting



Uncertainty from superfluid gap models

• Critical P0 depends on the choice of gap models 
• (DM heating) >> (rotochemical heating) for                       indep. of gap models 
• Recent studies of NS birth period suggest

P0 ≳ 100 ms

P0 = O(100) ms
[Popov & Turolla, 1204.0632; Noutsos et.al., 1301.1265; Igoshev & Popov, 1303.5258;  
Faucher-Giguere & Kaspi, astro-ph/0512585; Popov et al., 0910.2190;  
Gullo ń et al., 1406.6794, 1507.05452; Mu ̈ller et al., 1811.05483]

(neutron gap, proton gap)



Summary



Summary

• It is known that DM heating can heat up a old NS 

• We point out that DM heating may be hidden by other NS heating 
mechanisms 

• Among proposed heating mechanisms, rotochemical heating is 
inevitable for any pulsar 

• We compare the prediction of rotochemical heating to observations 
including both neutron and proton pairing gaps 

• We then find that if the initial spin period is long enough, DM heating 
is stronger than rotochemical heating



Backup



M Znpe Znpµ Znp Wnpe Wnpµ

[M�] [10�61 erg] [10�61 erg] [10�61 erg] [10�13 erg s2] [10�13 erg s2]

1.4 10 12 4 �1.5 �2
1.8 6 7 2 �1.4 �1.8

Table 2: The values of Znp, Znp`, and Wnp` in Eqs. (13) and (14), which are taken from Ref. [23].

We divide the NSs listed in Tab. 1 into two categories: MSPs and the others. The latter contains
ordinary pulsars and XDINSs. We exploit a representative parameter set for each category as
follows:

Millisecond pulsars MSPs have much smaller P and €P than ordinary pulsars. With MSP J0437-
4715 in mind, we use the following parameters for this category:

• M = 1.4 M�.

• P = 5.8 ms.

• €P = 5.7 ⇥ 10�20.

• �M/M = 10�7.

We also note that the values of P and €P of J2124-3358, P = 4.9 ms and €P = 2.1 ⇥ 10�20, are fairly
close to those of J0437-4715, while its mass is unknown. We have fixed the amount of the light
elements in the envelope, �M/M = 10�7, as it turns out that the result is almost independent of
this choice for old NSs such as J0437-4715 and J2124-3358.

Ordinary pulsars and XDINSs For ordinary pulsars and XDINSs, we use

• M = 1.4 M� or 1.8 M�.

• P = 1 s.

• €P = 1 ⇥ 10�15.

• �M/M = 10�7 or 10�15.

Note that P and €P a�ect the rotochemical heating only through Eq. (16), and thus the result
depends only on the combination P €P. Ordinary pulsars have P €P ⇠ 10�17

� 10�13, corresponding
to B ⇠ 1011

� 1013 G. The dependence of the thermal evolution on P €P is weaker than that on gap
models and P0, and thus we fix it to be P €P = 1 ⇥ 10�15 s in the following analysis.

Once we fix the NS parameters as above, the time evolution of the NS surface temperature
depends only on the nucleon gap models and the initial period P0. As we see in Sec. 2.2.2, the
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Millisecond pulsars

• Two old hot MSPs are explained for various choice of gap models 
• Including both proton and neutron gap enhances heating

[KY, Koichi Hamaguchi, Natsumi Nagata, arXiv: 1904.04667]

Can we explian hot MSPs?



Ordinary pulsars and XDINSs

• Many ordinary pulsars and XDINSs are also explained 
• XDINSs are warmer, but may be explained by systematic uncertainties 

or heating caused by strong magnetic field
[KY, Koichi Hamaguchi, Natsumi Nagata, arXiv: 1904.04667]

M Znpe Znpµ Znp Wnpe Wnpµ

[M�] [10�61 erg] [10�61 erg] [10�61 erg] [10�13 erg s2] [10�13 erg s2]

1.4 10 12 4 �1.5 �2
1.8 6 7 2 �1.4 �1.8

Table 2: The values of Znp, Znp`, and Wnp` in Eqs. (13) and (14), which are taken from Ref. [23].

We divide the NSs listed in Tab. 1 into two categories: MSPs and the others. The latter contains
ordinary pulsars and XDINSs. We exploit a representative parameter set for each category as
follows:

Millisecond pulsars MSPs have much smaller P and €P than ordinary pulsars. With MSP J0437-
4715 in mind, we use the following parameters for this category:

• M = 1.4 M�.

• P = 5.8 ms.

• €P = 5.7 ⇥ 10�20.

• �M/M = 10�7.

We also note that the values of P and €P of J2124-3358, P = 4.9 ms and €P = 2.1 ⇥ 10�20, are fairly
close to those of J0437-4715, while its mass is unknown. We have fixed the amount of the light
elements in the envelope, �M/M = 10�7, as it turns out that the result is almost independent of
this choice for old NSs such as J0437-4715 and J2124-3358.

Ordinary pulsars and XDINSs For ordinary pulsars and XDINSs, we use

• M = 1.4 M� or 1.8 M�.

• P = 1 s.

• €P = 1 ⇥ 10�15.

• �M/M = 10�7 or 10�15.

Note that P and €P a�ect the rotochemical heating only through Eq. (16), and thus the result
depends only on the combination P €P. Ordinary pulsars have P €P ⇠ 10�17

� 10�13, corresponding
to B ⇠ 1011

� 1013 G. The dependence of the thermal evolution on P €P is weaker than that on gap
models and P0, and thus we fix it to be P €P = 1 ⇥ 10�15 s in the following analysis.

Once we fix the NS parameters as above, the time evolution of the NS surface temperature
depends only on the nucleon gap models and the initial period P0. As we see in Sec. 2.2.2, the
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Can the same setup explain other NS temperatures?



Initial spin period is a key parameter

• Heating is weakened for longer initial period 
• Old and cold NS is explained by assuming they had long initial period

P0 = 10 ms

[KY, Koichi Hamaguchi, Natsumi Nagata, arXiv: 1904.04667]



Threshold of heating

Superfluidity makes threshold for rotochemical heating

For simplicity, consider direct Urca: n → p + e + ν̄e p + e → n + νe

Δth = min{3Δn + Δp, Δn + 3Δp}

ηe < Δn + Δp

μn − Δn

μp + μe + Δp

ηe > Δn + Δp

μn − Δn μp + μe + Δp

For modified Urca



Neutron star envelope

Envelope: composed of light elements (H, He, C,…) and heavy elements (Fe)

Large temperature gradient exists

T
109 K

∼ 0.1288 × ( (Ts /106 K)4

g14 )
0.455

for a given Tb if they are present in sufficient amounts. The
larger the amount of light elements present, the higher the
temperature at which their effect will be felt due to the tem-
perature dependence of the location of the sensitivity strip. But
at very high temperatures, the light elements have practically
no effect because they cannot penetrate deep enough. The
resulting T1

e -Tb relationships for various amounts of light
elements are shown in Figure 14.

The presence of a magnetic field can also affect the structure
of the envelope (Greenstein & Hartke 1983). The effect is to
enhance heat transport along the field and inhibit transport
along directions perpendicular to the field. This results in a
nonuniform surface temperature distribution, with a very cold
region in which the field is almost tangential to the surface as,
e.g., around the magnetic equator for a dipolar field, and a
corresponding modification of the T1

e -Tb relationship (Page
1995). However, the overall effect is not very large but is
somewhat sensitive to the presence of strongly nondipolar
surface fields (Page & Sarmiento 1996). For a field of the order
of 1011–1012 G, one obtains a slight reduction of T1

e compared
to the field-free case, whereas for a higher field T1

e begins
to be enhanced. The enhancement of T1

e is, however, much
smaller than what is obtained by the presence of light elements
(Potekhin et al. 2003). Moreover, there are possible insta-
bilities due to the nonuniformity of the temperature (Urpin
2004) that have not yet been taken into account in magnetized
envelope calculations and may somewhat affect these results,
but we do not expect significant changes. Hence, the important
case for our purpose would be the maximal reduction of T1

e
obtained for a pure heavy element envelope at B ¼ 1011 G,
which is illustrated in Figure 14.

One must finally mention that our calculations are based on
the assumption of spherical symmetry in the interior and that
the only asymmetries considered, due to the presence of a
magnetic field, are within the envelope and hence included
into this outer boundary condition. However, this assumption
is questionable in some magnetic field configurations where
the field is confined to the stellar crust. As shown by Geppert

et al. (2004), the crust is highly nonisothermal in such cases
and this can affect the thermal evolution because the resulting
photon luminosity is lowered compared to the isothermal crust
case.

5. A GENERAL STUDY OF NEUTRON STAR COOLING
WITHIN THE ‘‘MINIMAL SCENARIO’’

In this section, we will consider the individual effects of
the chief physical ingredients that enter into the modeling of
the cooling of an isolated neutron star. Our purpose here is
twofold:

1. to determine the sensitivity of results to uncertainties in
input physics in order to obtain a broad range of predictions
that, we hope, encompasses all possible variations within the
minimal cooling scenario;
2. to provide us with the means to identify the types of

models that will result in the coldest possible neutron stars
within this paradigm.

Theoretical refutations of the critical physical ingredients
needed for these coldest models could allow us to raise the
temperature predictions and possibly provide more, or stron-
ger, evidence for ‘‘enhanced cooling.’’ The task of identifying
the minimally cooling coldest star will be taken up in x 6. An
object colder than such a star could be considered as evidence
for the presence of physics beyond the minimal paradigm.
All results in this section use stars built using the APR EOS,

except for x 5.8, where the effects of the EOS are studied for a
star of 1.4 M", and for x 5.7, where effects of the stellar mass
are studied.

5.1. Neutrino vversus Photon Coolingg Eras
and the Effect of the Envvelope

The basic features of the thermal evolution of a neutron star
can be easily understood by considering the global thermal en-
ergy balance of the star

dEth

dt
# CV

dT

dt
¼ $L!$ L" ; ð35Þ

where Eth is the total thermal energy content of the star and
CV its total specific heat. This equation is accurate when the
star is isothermal, which is the case for ages larger than a few
decades. Since the dominant neutrino processes all have a T 8

temperature dependence, the neutrino luminosity can be ex-
pressed as

L! ¼ NT8: ð36Þ

Furthermore, most of the specific heat comes from the de-
generate fermions in the core for which

CV ¼ CT ð37Þ

in the absence of pairing interactions. The photon luminosity
can be written as

L" # 4#R2$SBT
4
e ¼ ST 2þ 4% ; ð38Þ

where Te, the effective temperature, is converted into the in-
ternal temperature T through an envelope model with a power-
law dependence: Te / T 0:5þ % with %T1 (see eq. [34] and

Fig. 14.—Relationship between the effective temperature T1
e and the in-

terior temperature Tb at the bottom of the envelope assuming various amounts
of light elements parametrized by & # g2

s14!ML=M (!ML is the mass in light
elements in the envelope, gs14 the surface gravity in units of 1014 cm s$1, and
M is the star’s mass), in the absence of a magnetic field (Potekhin et al. 1997).
Also shown are the T1

e -Tb relationships for an envelope of heavy elements
with and without the presence of a dipolar field of strength of 1011 G following
Potekhin & Yakovlev (2001).
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[Gudmundsson et al. (1983)]

More accurate relation is available [Potekhin et al. (1997)]

[Figure from Page et al. (2004)]

surface gravity [1014 cm s−2]

Characterized by
η = g2

14ΔM/M
mass of light elements


