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Figure 1. A schematic representation of the clockwork mechanism increasing the interaction scale
of a non-renormalisable operator.

Next, expand this simple setup to N+1 copies of the original system, and consider

them as sites of a one-dimensional lattice in theory space. The full theory possesses a

symmetry G, which contains at least the product of the individual symmetries (G ⊇ SN+1),

and describes N+1 massless particles P . Now, at a mass scale m, introduce an explicit, but

soft, breaking of the symmetry G which is local in theory space, through a mass mixing

linking near-neighbours of the N +1 lattice sites. Thus far the construction resembles

fields in a deconstructed flat extra dimension, [12–14], however the critical difference is

that this breaking includes a parameter q "= 1 that treats the site j+1 and the site j (with

j = 0, . . . , N−1) asymmetrically. As we are considering a 1D lattice with boundaries, we

can form only N links out of the N+1 sites. Since each link breaks the symmetry of a single

site, one symmetry group S0 survives the breaking of G; hence, one linear combination of

the original particles (called P0) remains massless.

The crucial aspect of the clockwork is that the particle P0 is not uniformly distributed in

theory space along the sites, but is exponentially localised towards one of the boundaries.

At the opposite boundary, the component of P0 is exponentially small and is given by

1/qN . It is clear that, for moderately large values of q and N one can obtain exponential

suppression of the P0 component at one boundary. If, at that boundary, we couple the

clockwork sector to the SM, we automatically obtain very small couplings of P0 to ordinary

particles, without introducing small parameters, multiple mass scales, or exponentially

large field multiplicities in the fundamental theory.

When P is a spin-0 scalar, spin-1/2 fermion, spin-1 boson, or spin-2 graviton, the cor-

responding symmetry S is a Goldstone shift symmetry, chiral symmetry, gauge symmetry,

and linearised 4D diffeomorphism invariance, respectively. Each case introduces new model

building applications. With a clockwork scalar one can construct invisible axion models

at the weak scale. A clockwork fermion can explain a very small Dirac neutrino mass or

address the hierarchical pattern of quark and lepton masses. With a clockwork gauge bo-

son one can justify the existence of tiny gauge charges, with phenomenological predictions

that differentiate from a scenario with simply a small gauge coupling. Finally, the most

exciting application is found with the clockwork graviton, which offers a novel solution to

the naturalness problem of the electroweak scale, providing a dynamical explanation for

the weakness of gravity. In this paper, we will mainly focus on the structural aspects of

the clockwork theory, leaving phenomenological issues to future work.
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Figure 1. A schematic representation of the clockwork mechanism increasing the interaction scale
of a non-renormalisable operator.

Next, expand this simple setup to N+1 copies of the original system, and consider

them as sites of a one-dimensional lattice in theory space. The full theory possesses a

symmetry G, which contains at least the product of the individual symmetries (G ⊇ SN+1),

and describes N+1 massless particles P . Now, at a mass scale m, introduce an explicit, but

soft, breaking of the symmetry G which is local in theory space, through a mass mixing

linking near-neighbours of the N +1 lattice sites. Thus far the construction resembles

fields in a deconstructed flat extra dimension, [12–14], however the critical difference is

that this breaking includes a parameter q "= 1 that treats the site j+1 and the site j (with

j = 0, . . . , N−1) asymmetrically. As we are considering a 1D lattice with boundaries, we

can form only N links out of the N+1 sites. Since each link breaks the symmetry of a single

site, one symmetry group S0 survives the breaking of G; hence, one linear combination of

the original particles (called P0) remains massless.

The crucial aspect of the clockwork is that the particle P0 is not uniformly distributed in

theory space along the sites, but is exponentially localised towards one of the boundaries.

At the opposite boundary, the component of P0 is exponentially small and is given by

1/qN . It is clear that, for moderately large values of q and N one can obtain exponential

suppression of the P0 component at one boundary. If, at that boundary, we couple the

clockwork sector to the SM, we automatically obtain very small couplings of P0 to ordinary

particles, without introducing small parameters, multiple mass scales, or exponentially

large field multiplicities in the fundamental theory.

When P is a spin-0 scalar, spin-1/2 fermion, spin-1 boson, or spin-2 graviton, the cor-

responding symmetry S is a Goldstone shift symmetry, chiral symmetry, gauge symmetry,

and linearised 4D diffeomorphism invariance, respectively. Each case introduces new model

building applications. With a clockwork scalar one can construct invisible axion models

at the weak scale. A clockwork fermion can explain a very small Dirac neutrino mass or

address the hierarchical pattern of quark and lepton masses. With a clockwork gauge bo-

son one can justify the existence of tiny gauge charges, with phenomenological predictions

that differentiate from a scenario with simply a small gauge coupling. Finally, the most

exciting application is found with the clockwork graviton, which offers a novel solution to

the naturalness problem of the electroweak scale, providing a dynamical explanation for

the weakness of gravity. In this paper, we will mainly focus on the structural aspects of

the clockwork theory, leaving phenomenological issues to future work.
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(2)SM is coupled to the last field
→ effective couplings will be small
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Figure 1. A schematic representation of the clockwork mechanism increasing the interaction scale
of a non-renormalisable operator.

Next, expand this simple setup to N+1 copies of the original system, and consider

them as sites of a one-dimensional lattice in theory space. The full theory possesses a

symmetry G, which contains at least the product of the individual symmetries (G ⊇ SN+1),

and describes N+1 massless particles P . Now, at a mass scale m, introduce an explicit, but

soft, breaking of the symmetry G which is local in theory space, through a mass mixing

linking near-neighbours of the N +1 lattice sites. Thus far the construction resembles

fields in a deconstructed flat extra dimension, [12–14], however the critical difference is

that this breaking includes a parameter q "= 1 that treats the site j+1 and the site j (with

j = 0, . . . , N−1) asymmetrically. As we are considering a 1D lattice with boundaries, we

can form only N links out of the N+1 sites. Since each link breaks the symmetry of a single

site, one symmetry group S0 survives the breaking of G; hence, one linear combination of

the original particles (called P0) remains massless.

The crucial aspect of the clockwork is that the particle P0 is not uniformly distributed in

theory space along the sites, but is exponentially localised towards one of the boundaries.

At the opposite boundary, the component of P0 is exponentially small and is given by

1/qN . It is clear that, for moderately large values of q and N one can obtain exponential

suppression of the P0 component at one boundary. If, at that boundary, we couple the

clockwork sector to the SM, we automatically obtain very small couplings of P0 to ordinary

particles, without introducing small parameters, multiple mass scales, or exponentially

large field multiplicities in the fundamental theory.

When P is a spin-0 scalar, spin-1/2 fermion, spin-1 boson, or spin-2 graviton, the cor-

responding symmetry S is a Goldstone shift symmetry, chiral symmetry, gauge symmetry,

and linearised 4D diffeomorphism invariance, respectively. Each case introduces new model

building applications. With a clockwork scalar one can construct invisible axion models

at the weak scale. A clockwork fermion can explain a very small Dirac neutrino mass or

address the hierarchical pattern of quark and lepton masses. With a clockwork gauge bo-

son one can justify the existence of tiny gauge charges, with phenomenological predictions

that differentiate from a scenario with simply a small gauge coupling. Finally, the most

exciting application is found with the clockwork graviton, which offers a novel solution to

the naturalness problem of the electroweak scale, providing a dynamical explanation for

the weakness of gravity. In this paper, we will mainly focus on the structural aspects of

the clockwork theory, leaving phenomenological issues to future work.
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Figure 1. A schematic representation of the clockwork mechanism increasing the interaction scale
of a non-renormalisable operator.

Next, expand this simple setup to N+1 copies of the original system, and consider

them as sites of a one-dimensional lattice in theory space. The full theory possesses a

symmetry G, which contains at least the product of the individual symmetries (G ⊇ SN+1),

and describes N+1 massless particles P . Now, at a mass scale m, introduce an explicit, but

soft, breaking of the symmetry G which is local in theory space, through a mass mixing

linking near-neighbours of the N +1 lattice sites. Thus far the construction resembles

fields in a deconstructed flat extra dimension, [12–14], however the critical difference is

that this breaking includes a parameter q "= 1 that treats the site j+1 and the site j (with

j = 0, . . . , N−1) asymmetrically. As we are considering a 1D lattice with boundaries, we

can form only N links out of the N+1 sites. Since each link breaks the symmetry of a single

site, one symmetry group S0 survives the breaking of G; hence, one linear combination of

the original particles (called P0) remains massless.

The crucial aspect of the clockwork is that the particle P0 is not uniformly distributed in

theory space along the sites, but is exponentially localised towards one of the boundaries.

At the opposite boundary, the component of P0 is exponentially small and is given by

1/qN . It is clear that, for moderately large values of q and N one can obtain exponential

suppression of the P0 component at one boundary. If, at that boundary, we couple the

clockwork sector to the SM, we automatically obtain very small couplings of P0 to ordinary

particles, without introducing small parameters, multiple mass scales, or exponentially

large field multiplicities in the fundamental theory.

When P is a spin-0 scalar, spin-1/2 fermion, spin-1 boson, or spin-2 graviton, the cor-

responding symmetry S is a Goldstone shift symmetry, chiral symmetry, gauge symmetry,

and linearised 4D diffeomorphism invariance, respectively. Each case introduces new model

building applications. With a clockwork scalar one can construct invisible axion models

at the weak scale. A clockwork fermion can explain a very small Dirac neutrino mass or

address the hierarchical pattern of quark and lepton masses. With a clockwork gauge bo-

son one can justify the existence of tiny gauge charges, with phenomenological predictions

that differentiate from a scenario with simply a small gauge coupling. Finally, the most

exciting application is found with the clockwork graviton, which offers a novel solution to

the naturalness problem of the electroweak scale, providing a dynamical explanation for

the weakness of gravity. In this paper, we will mainly focus on the structural aspects of

the clockwork theory, leaving phenomenological issues to future work.
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Figure 1. A schematic representation of the clockwork mechanism increasing the interaction scale
of a non-renormalisable operator.

Next, expand this simple setup to N+1 copies of the original system, and consider

them as sites of a one-dimensional lattice in theory space. The full theory possesses a

symmetry G, which contains at least the product of the individual symmetries (G ⊇ SN+1),

and describes N+1 massless particles P . Now, at a mass scale m, introduce an explicit, but

soft, breaking of the symmetry G which is local in theory space, through a mass mixing

linking near-neighbours of the N +1 lattice sites. Thus far the construction resembles

fields in a deconstructed flat extra dimension, [12–14], however the critical difference is

that this breaking includes a parameter q "= 1 that treats the site j+1 and the site j (with

j = 0, . . . , N−1) asymmetrically. As we are considering a 1D lattice with boundaries, we

can form only N links out of the N+1 sites. Since each link breaks the symmetry of a single

site, one symmetry group S0 survives the breaking of G; hence, one linear combination of

the original particles (called P0) remains massless.

The crucial aspect of the clockwork is that the particle P0 is not uniformly distributed in

theory space along the sites, but is exponentially localised towards one of the boundaries.

At the opposite boundary, the component of P0 is exponentially small and is given by

1/qN . It is clear that, for moderately large values of q and N one can obtain exponential

suppression of the P0 component at one boundary. If, at that boundary, we couple the

clockwork sector to the SM, we automatically obtain very small couplings of P0 to ordinary

particles, without introducing small parameters, multiple mass scales, or exponentially

large field multiplicities in the fundamental theory.

When P is a spin-0 scalar, spin-1/2 fermion, spin-1 boson, or spin-2 graviton, the cor-

responding symmetry S is a Goldstone shift symmetry, chiral symmetry, gauge symmetry,

and linearised 4D diffeomorphism invariance, respectively. Each case introduces new model

building applications. With a clockwork scalar one can construct invisible axion models

at the weak scale. A clockwork fermion can explain a very small Dirac neutrino mass or

address the hierarchical pattern of quark and lepton masses. With a clockwork gauge bo-

son one can justify the existence of tiny gauge charges, with phenomenological predictions

that differentiate from a scenario with simply a small gauge coupling. Finally, the most

exciting application is found with the clockwork graviton, which offers a novel solution to

the naturalness problem of the electroweak scale, providing a dynamical explanation for

the weakness of gravity. In this paper, we will mainly focus on the structural aspects of

the clockwork theory, leaving phenomenological issues to future work.
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Figure 1. A schematic representation of the clockwork mechanism increasing the interaction scale
of a non-renormalisable operator.

Next, expand this simple setup to N+1 copies of the original system, and consider

them as sites of a one-dimensional lattice in theory space. The full theory possesses a

symmetry G, which contains at least the product of the individual symmetries (G ⊇ SN+1),

and describes N+1 massless particles P . Now, at a mass scale m, introduce an explicit, but

soft, breaking of the symmetry G which is local in theory space, through a mass mixing

linking near-neighbours of the N +1 lattice sites. Thus far the construction resembles

fields in a deconstructed flat extra dimension, [12–14], however the critical difference is

that this breaking includes a parameter q "= 1 that treats the site j+1 and the site j (with

j = 0, . . . , N−1) asymmetrically. As we are considering a 1D lattice with boundaries, we

can form only N links out of the N+1 sites. Since each link breaks the symmetry of a single

site, one symmetry group S0 survives the breaking of G; hence, one linear combination of

the original particles (called P0) remains massless.

The crucial aspect of the clockwork is that the particle P0 is not uniformly distributed in

theory space along the sites, but is exponentially localised towards one of the boundaries.

At the opposite boundary, the component of P0 is exponentially small and is given by

1/qN . It is clear that, for moderately large values of q and N one can obtain exponential

suppression of the P0 component at one boundary. If, at that boundary, we couple the

clockwork sector to the SM, we automatically obtain very small couplings of P0 to ordinary

particles, without introducing small parameters, multiple mass scales, or exponentially

large field multiplicities in the fundamental theory.

When P is a spin-0 scalar, spin-1/2 fermion, spin-1 boson, or spin-2 graviton, the cor-

responding symmetry S is a Goldstone shift symmetry, chiral symmetry, gauge symmetry,

and linearised 4D diffeomorphism invariance, respectively. Each case introduces new model

building applications. With a clockwork scalar one can construct invisible axion models

at the weak scale. A clockwork fermion can explain a very small Dirac neutrino mass or

address the hierarchical pattern of quark and lepton masses. With a clockwork gauge bo-

son one can justify the existence of tiny gauge charges, with phenomenological predictions

that differentiate from a scenario with simply a small gauge coupling. Finally, the most

exciting application is found with the clockwork graviton, which offers a novel solution to

the naturalness problem of the electroweak scale, providing a dynamical explanation for

the weakness of gravity. In this paper, we will mainly focus on the structural aspects of

the clockwork theory, leaving phenomenological issues to future work.
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Figure 1. A schematic representation of the clockwork mechanism increasing the interaction scale
of a non-renormalisable operator.

Next, expand this simple setup to N+1 copies of the original system, and consider

them as sites of a one-dimensional lattice in theory space. The full theory possesses a

symmetry G, which contains at least the product of the individual symmetries (G ⊇ SN+1),

and describes N+1 massless particles P . Now, at a mass scale m, introduce an explicit, but

soft, breaking of the symmetry G which is local in theory space, through a mass mixing

linking near-neighbours of the N +1 lattice sites. Thus far the construction resembles

fields in a deconstructed flat extra dimension, [12–14], however the critical difference is

that this breaking includes a parameter q "= 1 that treats the site j+1 and the site j (with

j = 0, . . . , N−1) asymmetrically. As we are considering a 1D lattice with boundaries, we

can form only N links out of the N+1 sites. Since each link breaks the symmetry of a single

site, one symmetry group S0 survives the breaking of G; hence, one linear combination of

the original particles (called P0) remains massless.

The crucial aspect of the clockwork is that the particle P0 is not uniformly distributed in

theory space along the sites, but is exponentially localised towards one of the boundaries.

At the opposite boundary, the component of P0 is exponentially small and is given by

1/qN . It is clear that, for moderately large values of q and N one can obtain exponential

suppression of the P0 component at one boundary. If, at that boundary, we couple the

clockwork sector to the SM, we automatically obtain very small couplings of P0 to ordinary

particles, without introducing small parameters, multiple mass scales, or exponentially

large field multiplicities in the fundamental theory.

When P is a spin-0 scalar, spin-1/2 fermion, spin-1 boson, or spin-2 graviton, the cor-

responding symmetry S is a Goldstone shift symmetry, chiral symmetry, gauge symmetry,

and linearised 4D diffeomorphism invariance, respectively. Each case introduces new model

building applications. With a clockwork scalar one can construct invisible axion models

at the weak scale. A clockwork fermion can explain a very small Dirac neutrino mass or

address the hierarchical pattern of quark and lepton masses. With a clockwork gauge bo-

son one can justify the existence of tiny gauge charges, with phenomenological predictions

that differentiate from a scenario with simply a small gauge coupling. Finally, the most

exciting application is found with the clockwork graviton, which offers a novel solution to

the naturalness problem of the electroweak scale, providing a dynamical explanation for

the weakness of gravity. In this paper, we will mainly focus on the structural aspects of

the clockwork theory, leaving phenomenological issues to future work.
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Figure 1. A schematic representation of the clockwork mechanism increasing the interaction scale
of a non-renormalisable operator.

Next, expand this simple setup to N+1 copies of the original system, and consider

them as sites of a one-dimensional lattice in theory space. The full theory possesses a

symmetry G, which contains at least the product of the individual symmetries (G ⊇ SN+1),

and describes N+1 massless particles P . Now, at a mass scale m, introduce an explicit, but

soft, breaking of the symmetry G which is local in theory space, through a mass mixing

linking near-neighbours of the N +1 lattice sites. Thus far the construction resembles

fields in a deconstructed flat extra dimension, [12–14], however the critical difference is

that this breaking includes a parameter q "= 1 that treats the site j+1 and the site j (with

j = 0, . . . , N−1) asymmetrically. As we are considering a 1D lattice with boundaries, we

can form only N links out of the N+1 sites. Since each link breaks the symmetry of a single

site, one symmetry group S0 survives the breaking of G; hence, one linear combination of

the original particles (called P0) remains massless.

The crucial aspect of the clockwork is that the particle P0 is not uniformly distributed in

theory space along the sites, but is exponentially localised towards one of the boundaries.

At the opposite boundary, the component of P0 is exponentially small and is given by

1/qN . It is clear that, for moderately large values of q and N one can obtain exponential

suppression of the P0 component at one boundary. If, at that boundary, we couple the

clockwork sector to the SM, we automatically obtain very small couplings of P0 to ordinary

particles, without introducing small parameters, multiple mass scales, or exponentially

large field multiplicities in the fundamental theory.

When P is a spin-0 scalar, spin-1/2 fermion, spin-1 boson, or spin-2 graviton, the cor-

responding symmetry S is a Goldstone shift symmetry, chiral symmetry, gauge symmetry,

and linearised 4D diffeomorphism invariance, respectively. Each case introduces new model

building applications. With a clockwork scalar one can construct invisible axion models

at the weak scale. A clockwork fermion can explain a very small Dirac neutrino mass or

address the hierarchical pattern of quark and lepton masses. With a clockwork gauge bo-

son one can justify the existence of tiny gauge charges, with phenomenological predictions

that differentiate from a scenario with simply a small gauge coupling. Finally, the most

exciting application is found with the clockwork graviton, which offers a novel solution to

the naturalness problem of the electroweak scale, providing a dynamical explanation for

the weakness of gravity. In this paper, we will mainly focus on the structural aspects of

the clockwork theory, leaving phenomenological issues to future work.
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Figure 1. A schematic representation of the clockwork mechanism increasing the interaction scale
of a non-renormalisable operator.

Next, expand this simple setup to N+1 copies of the original system, and consider

them as sites of a one-dimensional lattice in theory space. The full theory possesses a

symmetry G, which contains at least the product of the individual symmetries (G ⊇ SN+1),

and describes N+1 massless particles P . Now, at a mass scale m, introduce an explicit, but

soft, breaking of the symmetry G which is local in theory space, through a mass mixing

linking near-neighbours of the N +1 lattice sites. Thus far the construction resembles

fields in a deconstructed flat extra dimension, [12–14], however the critical difference is

that this breaking includes a parameter q "= 1 that treats the site j+1 and the site j (with

j = 0, . . . , N−1) asymmetrically. As we are considering a 1D lattice with boundaries, we

can form only N links out of the N+1 sites. Since each link breaks the symmetry of a single

site, one symmetry group S0 survives the breaking of G; hence, one linear combination of

the original particles (called P0) remains massless.

The crucial aspect of the clockwork is that the particle P0 is not uniformly distributed in

theory space along the sites, but is exponentially localised towards one of the boundaries.

At the opposite boundary, the component of P0 is exponentially small and is given by

1/qN . It is clear that, for moderately large values of q and N one can obtain exponential

suppression of the P0 component at one boundary. If, at that boundary, we couple the

clockwork sector to the SM, we automatically obtain very small couplings of P0 to ordinary

particles, without introducing small parameters, multiple mass scales, or exponentially

large field multiplicities in the fundamental theory.

When P is a spin-0 scalar, spin-1/2 fermion, spin-1 boson, or spin-2 graviton, the cor-

responding symmetry S is a Goldstone shift symmetry, chiral symmetry, gauge symmetry,

and linearised 4D diffeomorphism invariance, respectively. Each case introduces new model

building applications. With a clockwork scalar one can construct invisible axion models

at the weak scale. A clockwork fermion can explain a very small Dirac neutrino mass or

address the hierarchical pattern of quark and lepton masses. With a clockwork gauge bo-

son one can justify the existence of tiny gauge charges, with phenomenological predictions

that differentiate from a scenario with simply a small gauge coupling. Finally, the most

exciting application is found with the clockwork graviton, which offers a novel solution to

the naturalness problem of the electroweak scale, providing a dynamical explanation for

the weakness of gravity. In this paper, we will mainly focus on the structural aspects of

the clockwork theory, leaving phenomenological issues to future work.
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de Salas et al. Neutrino Mass Ordering in 2018

FIGURE 3 | 95.5 and 99.7% Bayesian credible intervals for the effective Majorana mass, mββ , as a function of the lightest neutrino mass (Left) or of the sum of the

neutrino masses
∑

mν (Right), taking into account the current uncertainties on the neutrino mixing parameters (angles and phases), when three neutrinos are

considered. The horizontal bands indicate the most conservative version (obtained by each collaboration when assuming a disfavorable value for the nuclear matrix

element of the process) of some of the most competitive upper bounds, as those reported by KamLAND-Zen Gando et al. (2016), GERDA Phase II Agostini et al.

(2018) and CUORE Alduino et al. (2018a). The vertical band in the Right indicates the strongest limit reported by Planck Aghanim et al. (2016b), using the Planck

TT,TE,EE + SimLow + lensing data combination.

neutrinos travel through the Earth. For long-baseline accelerator
experiments, matter effects will increase with the baseline, while
these effects will be negligible at short-baseline and medium-
baseline experiments.

When neutrinos travel through the Earth, the effective matter
potential due to the electron (anti)neutrino charged-current
elastic scatterings with the electrons in the medium will modify
the three-flavor mixing processes. The effect will strongly depend
on the neutrino mass ordering: in the normal (inverted) mass
ordering scenario, the neutrino flavor transition probabilities
will get enhanced (suppressed). In the case of antineutrino
propagation, instead, the flavor transition probabilities will get
suppressed (enhanced) in the normal (inverted) mass ordering
scenario. This is the Wolfenstein effect (Wolfenstein, 1978),
later expanded by Mikheev and Smirnov Mikheev and Smirnov
(1985, 1986), and commonly named as the Mikheev-Smirnov-
Wolfenstein (MSW) effect (see e.g., Blennow and Smirnov, 2013
for a detailed description of neutrino oscillations in matter).

Matter effects in long-baseline accelerator or atmospheric
neutrino oscillation experiments depend on the size of the
effective mixing angle θ13 in matter, which leads the transitions
νe ↔ νµ,τ governed by the atmospheric mass-squared difference
%31 = %m2

31/2E. Within the simple two-flavor mixing
framework, the effective θ13 angle in matter reads as

sin2 2θm13 =
sin2 2θ13

sin2 2θ13 +
(
cos 2θ13 ∓

√
2GFNe
%31

)2 , (2)

where the minus (plus) sign refers to neutrinos (antineutrinos)
and Ne is the electron number density in the Earth interior. The
neutrino mass ordering fixes the sign of %31, that is positive
(negative) for normal (inverted) ordering: notice that, in the
presence of matter effects, the neutrino (antineutrino) oscillation
probability P(νµ → νe) [P(ν̄µ → ν̄e)] gets enhanced if the

ordering is normal (inverted). Exploiting the different matter
effects for neutrinos and antineutrinos provides therefore the
ideal tool to unravel the mass ordering.

Matter effects are expected to be particularly relevant when the
following resonance condition is satisfied:

%m2
31 cos 2θ13 = 2

√
2GFNeE . (3)

The precise location of the resonance will depend on both the
neutrino path and the neutrino energy. For instance, for%m2

31 ∼
2.5 × 10−3 eV2 and distances of several thousand kilometers, as
it is the case of atmospheric neutrinos, the resonance effect is
expected to happen for neutrino energies∼ 3− 8 GeV.

In the case of muon disappearance experiments, in the ∼
GeV energy range relevant for long-baseline and atmospheric
neutrino beams, the Pµµ survival probabilities are suppressed
(enhanced) due to matter effects if the ordering is normal
(inverted). If the matter density is constant, the Pµµ survival
probability at terrestrial baselines8 is given by

Pµµ = 1− cos2 θm13 sin
2 2θ23 × sin2

[

1.27

(
%m2

31 + A+ (%m2
31)

m

2

)
L

E

]

− sin2 θm13 sin
2 2θ23 × sin2

[

1.27

(
%m2

31 + A− (%m2
31)

m

2

)
L

E

]

(4)

− sin4 θ23 sin
2 2θm13 sin

2
[
1.27(%m2

31)
m L

E

]
,

8For an expansion including also the solar mixing parameters, see Ref.Akhmedov
et al. (2004).
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Figure 1. A schematic representation of the clockwork mechanism increasing the interaction scale
of a non-renormalisable operator.

Next, expand this simple setup to N+1 copies of the original system, and consider

them as sites of a one-dimensional lattice in theory space. The full theory possesses a

symmetry G, which contains at least the product of the individual symmetries (G ⊇ SN+1),

and describes N+1 massless particles P . Now, at a mass scale m, introduce an explicit, but

soft, breaking of the symmetry G which is local in theory space, through a mass mixing

linking near-neighbours of the N +1 lattice sites. Thus far the construction resembles

fields in a deconstructed flat extra dimension, [12–14], however the critical difference is

that this breaking includes a parameter q "= 1 that treats the site j+1 and the site j (with

j = 0, . . . , N−1) asymmetrically. As we are considering a 1D lattice with boundaries, we

can form only N links out of the N+1 sites. Since each link breaks the symmetry of a single

site, one symmetry group S0 survives the breaking of G; hence, one linear combination of

the original particles (called P0) remains massless.

The crucial aspect of the clockwork is that the particle P0 is not uniformly distributed in

theory space along the sites, but is exponentially localised towards one of the boundaries.

At the opposite boundary, the component of P0 is exponentially small and is given by

1/qN . It is clear that, for moderately large values of q and N one can obtain exponential

suppression of the P0 component at one boundary. If, at that boundary, we couple the

clockwork sector to the SM, we automatically obtain very small couplings of P0 to ordinary

particles, without introducing small parameters, multiple mass scales, or exponentially

large field multiplicities in the fundamental theory.

When P is a spin-0 scalar, spin-1/2 fermion, spin-1 boson, or spin-2 graviton, the cor-

responding symmetry S is a Goldstone shift symmetry, chiral symmetry, gauge symmetry,

and linearised 4D diffeomorphism invariance, respectively. Each case introduces new model

building applications. With a clockwork scalar one can construct invisible axion models

at the weak scale. A clockwork fermion can explain a very small Dirac neutrino mass or

address the hierarchical pattern of quark and lepton masses. With a clockwork gauge bo-

son one can justify the existence of tiny gauge charges, with phenomenological predictions

that differentiate from a scenario with simply a small gauge coupling. Finally, the most

exciting application is found with the clockwork graviton, which offers a novel solution to

the naturalness problem of the electroweak scale, providing a dynamical explanation for

the weakness of gravity. In this paper, we will mainly focus on the structural aspects of

the clockwork theory, leaving phenomenological issues to future work.
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Figure 1. A schematic representation of the clockwork mechanism increasing the interaction scale
of a non-renormalisable operator.

Next, expand this simple setup to N+1 copies of the original system, and consider

them as sites of a one-dimensional lattice in theory space. The full theory possesses a

symmetry G, which contains at least the product of the individual symmetries (G ⊇ SN+1),

and describes N+1 massless particles P . Now, at a mass scale m, introduce an explicit, but

soft, breaking of the symmetry G which is local in theory space, through a mass mixing

linking near-neighbours of the N +1 lattice sites. Thus far the construction resembles

fields in a deconstructed flat extra dimension, [12–14], however the critical difference is

that this breaking includes a parameter q "= 1 that treats the site j+1 and the site j (with

j = 0, . . . , N−1) asymmetrically. As we are considering a 1D lattice with boundaries, we

can form only N links out of the N+1 sites. Since each link breaks the symmetry of a single

site, one symmetry group S0 survives the breaking of G; hence, one linear combination of

the original particles (called P0) remains massless.

The crucial aspect of the clockwork is that the particle P0 is not uniformly distributed in

theory space along the sites, but is exponentially localised towards one of the boundaries.

At the opposite boundary, the component of P0 is exponentially small and is given by

1/qN . It is clear that, for moderately large values of q and N one can obtain exponential

suppression of the P0 component at one boundary. If, at that boundary, we couple the

clockwork sector to the SM, we automatically obtain very small couplings of P0 to ordinary

particles, without introducing small parameters, multiple mass scales, or exponentially

large field multiplicities in the fundamental theory.

When P is a spin-0 scalar, spin-1/2 fermion, spin-1 boson, or spin-2 graviton, the cor-

responding symmetry S is a Goldstone shift symmetry, chiral symmetry, gauge symmetry,

and linearised 4D diffeomorphism invariance, respectively. Each case introduces new model

building applications. With a clockwork scalar one can construct invisible axion models

at the weak scale. A clockwork fermion can explain a very small Dirac neutrino mass or

address the hierarchical pattern of quark and lepton masses. With a clockwork gauge bo-

son one can justify the existence of tiny gauge charges, with phenomenological predictions

that differentiate from a scenario with simply a small gauge coupling. Finally, the most

exciting application is found with the clockwork graviton, which offers a novel solution to

the naturalness problem of the electroweak scale, providing a dynamical explanation for

the weakness of gravity. In this paper, we will mainly focus on the structural aspects of

the clockwork theory, leaving phenomenological issues to future work.
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Figure 1. A schematic representation of the clockwork mechanism increasing the interaction scale
of a non-renormalisable operator.

Next, expand this simple setup to N+1 copies of the original system, and consider

them as sites of a one-dimensional lattice in theory space. The full theory possesses a

symmetry G, which contains at least the product of the individual symmetries (G ⊇ SN+1),

and describes N+1 massless particles P . Now, at a mass scale m, introduce an explicit, but

soft, breaking of the symmetry G which is local in theory space, through a mass mixing

linking near-neighbours of the N +1 lattice sites. Thus far the construction resembles

fields in a deconstructed flat extra dimension, [12–14], however the critical difference is

that this breaking includes a parameter q "= 1 that treats the site j+1 and the site j (with

j = 0, . . . , N−1) asymmetrically. As we are considering a 1D lattice with boundaries, we

can form only N links out of the N+1 sites. Since each link breaks the symmetry of a single

site, one symmetry group S0 survives the breaking of G; hence, one linear combination of

the original particles (called P0) remains massless.

The crucial aspect of the clockwork is that the particle P0 is not uniformly distributed in

theory space along the sites, but is exponentially localised towards one of the boundaries.

At the opposite boundary, the component of P0 is exponentially small and is given by

1/qN . It is clear that, for moderately large values of q and N one can obtain exponential

suppression of the P0 component at one boundary. If, at that boundary, we couple the

clockwork sector to the SM, we automatically obtain very small couplings of P0 to ordinary

particles, without introducing small parameters, multiple mass scales, or exponentially

large field multiplicities in the fundamental theory.

When P is a spin-0 scalar, spin-1/2 fermion, spin-1 boson, or spin-2 graviton, the cor-

responding symmetry S is a Goldstone shift symmetry, chiral symmetry, gauge symmetry,

and linearised 4D diffeomorphism invariance, respectively. Each case introduces new model

building applications. With a clockwork scalar one can construct invisible axion models

at the weak scale. A clockwork fermion can explain a very small Dirac neutrino mass or

address the hierarchical pattern of quark and lepton masses. With a clockwork gauge bo-

son one can justify the existence of tiny gauge charges, with phenomenological predictions

that differentiate from a scenario with simply a small gauge coupling. Finally, the most

exciting application is found with the clockwork graviton, which offers a novel solution to

the naturalness problem of the electroweak scale, providing a dynamical explanation for

the weakness of gravity. In this paper, we will mainly focus on the structural aspects of

the clockwork theory, leaving phenomenological issues to future work.
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Figure 1. A schematic representation of the clockwork mechanism increasing the interaction scale
of a non-renormalisable operator.

Next, expand this simple setup to N+1 copies of the original system, and consider

them as sites of a one-dimensional lattice in theory space. The full theory possesses a

symmetry G, which contains at least the product of the individual symmetries (G ⊇ SN+1),

and describes N+1 massless particles P . Now, at a mass scale m, introduce an explicit, but

soft, breaking of the symmetry G which is local in theory space, through a mass mixing

linking near-neighbours of the N +1 lattice sites. Thus far the construction resembles

fields in a deconstructed flat extra dimension, [12–14], however the critical difference is

that this breaking includes a parameter q "= 1 that treats the site j+1 and the site j (with

j = 0, . . . , N−1) asymmetrically. As we are considering a 1D lattice with boundaries, we

can form only N links out of the N+1 sites. Since each link breaks the symmetry of a single

site, one symmetry group S0 survives the breaking of G; hence, one linear combination of

the original particles (called P0) remains massless.

The crucial aspect of the clockwork is that the particle P0 is not uniformly distributed in

theory space along the sites, but is exponentially localised towards one of the boundaries.

At the opposite boundary, the component of P0 is exponentially small and is given by

1/qN . It is clear that, for moderately large values of q and N one can obtain exponential

suppression of the P0 component at one boundary. If, at that boundary, we couple the

clockwork sector to the SM, we automatically obtain very small couplings of P0 to ordinary

particles, without introducing small parameters, multiple mass scales, or exponentially

large field multiplicities in the fundamental theory.

When P is a spin-0 scalar, spin-1/2 fermion, spin-1 boson, or spin-2 graviton, the cor-

responding symmetry S is a Goldstone shift symmetry, chiral symmetry, gauge symmetry,

and linearised 4D diffeomorphism invariance, respectively. Each case introduces new model

building applications. With a clockwork scalar one can construct invisible axion models

at the weak scale. A clockwork fermion can explain a very small Dirac neutrino mass or

address the hierarchical pattern of quark and lepton masses. With a clockwork gauge bo-

son one can justify the existence of tiny gauge charges, with phenomenological predictions

that differentiate from a scenario with simply a small gauge coupling. Finally, the most

exciting application is found with the clockwork graviton, which offers a novel solution to

the naturalness problem of the electroweak scale, providing a dynamical explanation for

the weakness of gravity. In this paper, we will mainly focus on the structural aspects of

the clockwork theory, leaving phenomenological issues to future work.
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Figure 1. A schematic representation of the clockwork mechanism increasing the interaction scale
of a non-renormalisable operator.

Next, expand this simple setup to N+1 copies of the original system, and consider

them as sites of a one-dimensional lattice in theory space. The full theory possesses a

symmetry G, which contains at least the product of the individual symmetries (G ⊇ SN+1),

and describes N+1 massless particles P . Now, at a mass scale m, introduce an explicit, but

soft, breaking of the symmetry G which is local in theory space, through a mass mixing

linking near-neighbours of the N +1 lattice sites. Thus far the construction resembles

fields in a deconstructed flat extra dimension, [12–14], however the critical difference is

that this breaking includes a parameter q "= 1 that treats the site j+1 and the site j (with

j = 0, . . . , N−1) asymmetrically. As we are considering a 1D lattice with boundaries, we

can form only N links out of the N+1 sites. Since each link breaks the symmetry of a single

site, one symmetry group S0 survives the breaking of G; hence, one linear combination of

the original particles (called P0) remains massless.

The crucial aspect of the clockwork is that the particle P0 is not uniformly distributed in

theory space along the sites, but is exponentially localised towards one of the boundaries.

At the opposite boundary, the component of P0 is exponentially small and is given by

1/qN . It is clear that, for moderately large values of q and N one can obtain exponential

suppression of the P0 component at one boundary. If, at that boundary, we couple the

clockwork sector to the SM, we automatically obtain very small couplings of P0 to ordinary

particles, without introducing small parameters, multiple mass scales, or exponentially

large field multiplicities in the fundamental theory.

When P is a spin-0 scalar, spin-1/2 fermion, spin-1 boson, or spin-2 graviton, the cor-

responding symmetry S is a Goldstone shift symmetry, chiral symmetry, gauge symmetry,

and linearised 4D diffeomorphism invariance, respectively. Each case introduces new model

building applications. With a clockwork scalar one can construct invisible axion models

at the weak scale. A clockwork fermion can explain a very small Dirac neutrino mass or

address the hierarchical pattern of quark and lepton masses. With a clockwork gauge bo-

son one can justify the existence of tiny gauge charges, with phenomenological predictions

that differentiate from a scenario with simply a small gauge coupling. Finally, the most

exciting application is found with the clockwork graviton, which offers a novel solution to

the naturalness problem of the electroweak scale, providing a dynamical explanation for

the weakness of gravity. In this paper, we will mainly focus on the structural aspects of

the clockwork theory, leaving phenomenological issues to future work.
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Figure 1. A schematic representation of the clockwork mechanism increasing the interaction scale
of a non-renormalisable operator.

Next, expand this simple setup to N+1 copies of the original system, and consider

them as sites of a one-dimensional lattice in theory space. The full theory possesses a

symmetry G, which contains at least the product of the individual symmetries (G ⊇ SN+1),

and describes N+1 massless particles P . Now, at a mass scale m, introduce an explicit, but

soft, breaking of the symmetry G which is local in theory space, through a mass mixing

linking near-neighbours of the N +1 lattice sites. Thus far the construction resembles

fields in a deconstructed flat extra dimension, [12–14], however the critical difference is

that this breaking includes a parameter q "= 1 that treats the site j+1 and the site j (with

j = 0, . . . , N−1) asymmetrically. As we are considering a 1D lattice with boundaries, we

can form only N links out of the N+1 sites. Since each link breaks the symmetry of a single

site, one symmetry group S0 survives the breaking of G; hence, one linear combination of

the original particles (called P0) remains massless.

The crucial aspect of the clockwork is that the particle P0 is not uniformly distributed in

theory space along the sites, but is exponentially localised towards one of the boundaries.

At the opposite boundary, the component of P0 is exponentially small and is given by

1/qN . It is clear that, for moderately large values of q and N one can obtain exponential

suppression of the P0 component at one boundary. If, at that boundary, we couple the

clockwork sector to the SM, we automatically obtain very small couplings of P0 to ordinary

particles, without introducing small parameters, multiple mass scales, or exponentially

large field multiplicities in the fundamental theory.

When P is a spin-0 scalar, spin-1/2 fermion, spin-1 boson, or spin-2 graviton, the cor-

responding symmetry S is a Goldstone shift symmetry, chiral symmetry, gauge symmetry,

and linearised 4D diffeomorphism invariance, respectively. Each case introduces new model

building applications. With a clockwork scalar one can construct invisible axion models

at the weak scale. A clockwork fermion can explain a very small Dirac neutrino mass or

address the hierarchical pattern of quark and lepton masses. With a clockwork gauge bo-

son one can justify the existence of tiny gauge charges, with phenomenological predictions

that differentiate from a scenario with simply a small gauge coupling. Finally, the most

exciting application is found with the clockwork graviton, which offers a novel solution to

the naturalness problem of the electroweak scale, providing a dynamical explanation for

the weakness of gravity. In this paper, we will mainly focus on the structural aspects of

the clockwork theory, leaving phenomenological issues to future work.
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of a non-renormalisable operator.

Next, expand this simple setup to N+1 copies of the original system, and consider

them as sites of a one-dimensional lattice in theory space. The full theory possesses a

symmetry G, which contains at least the product of the individual symmetries (G ⊇ SN+1),

and describes N+1 massless particles P . Now, at a mass scale m, introduce an explicit, but

soft, breaking of the symmetry G which is local in theory space, through a mass mixing

linking near-neighbours of the N +1 lattice sites. Thus far the construction resembles

fields in a deconstructed flat extra dimension, [12–14], however the critical difference is

that this breaking includes a parameter q "= 1 that treats the site j+1 and the site j (with

j = 0, . . . , N−1) asymmetrically. As we are considering a 1D lattice with boundaries, we

can form only N links out of the N+1 sites. Since each link breaks the symmetry of a single

site, one symmetry group S0 survives the breaking of G; hence, one linear combination of

the original particles (called P0) remains massless.

The crucial aspect of the clockwork is that the particle P0 is not uniformly distributed in

theory space along the sites, but is exponentially localised towards one of the boundaries.

At the opposite boundary, the component of P0 is exponentially small and is given by

1/qN . It is clear that, for moderately large values of q and N one can obtain exponential

suppression of the P0 component at one boundary. If, at that boundary, we couple the

clockwork sector to the SM, we automatically obtain very small couplings of P0 to ordinary

particles, without introducing small parameters, multiple mass scales, or exponentially

large field multiplicities in the fundamental theory.

When P is a spin-0 scalar, spin-1/2 fermion, spin-1 boson, or spin-2 graviton, the cor-

responding symmetry S is a Goldstone shift symmetry, chiral symmetry, gauge symmetry,

and linearised 4D diffeomorphism invariance, respectively. Each case introduces new model

building applications. With a clockwork scalar one can construct invisible axion models

at the weak scale. A clockwork fermion can explain a very small Dirac neutrino mass or

address the hierarchical pattern of quark and lepton masses. With a clockwork gauge bo-

son one can justify the existence of tiny gauge charges, with phenomenological predictions

that differentiate from a scenario with simply a small gauge coupling. Finally, the most

exciting application is found with the clockwork graviton, which offers a novel solution to

the naturalness problem of the electroweak scale, providing a dynamical explanation for

the weakness of gravity. In this paper, we will mainly focus on the structural aspects of

the clockwork theory, leaving phenomenological issues to future work.

– 3 –

ψ2
R0 − ⋯ − ψ2

Rn2

ψ3
R0 − ⋯ − ψ3

Rn3

CW-SM
ψ1

R0 − ⋯ − ψ1
Rn1

common 
Yukawa



mixings : pure CW origin

J
H
E
P
0
2
(
2
0
1
7
)
0
3
6

Λ ΛN = qNΛ

Figure 1. A schematic representation of the clockwork mechanism increasing the interaction scale
of a non-renormalisable operator.

Next, expand this simple setup to N+1 copies of the original system, and consider

them as sites of a one-dimensional lattice in theory space. The full theory possesses a

symmetry G, which contains at least the product of the individual symmetries (G ⊇ SN+1),

and describes N+1 massless particles P . Now, at a mass scale m, introduce an explicit, but

soft, breaking of the symmetry G which is local in theory space, through a mass mixing

linking near-neighbours of the N +1 lattice sites. Thus far the construction resembles

fields in a deconstructed flat extra dimension, [12–14], however the critical difference is

that this breaking includes a parameter q "= 1 that treats the site j+1 and the site j (with

j = 0, . . . , N−1) asymmetrically. As we are considering a 1D lattice with boundaries, we

can form only N links out of the N+1 sites. Since each link breaks the symmetry of a single

site, one symmetry group S0 survives the breaking of G; hence, one linear combination of

the original particles (called P0) remains massless.

The crucial aspect of the clockwork is that the particle P0 is not uniformly distributed in

theory space along the sites, but is exponentially localised towards one of the boundaries.

At the opposite boundary, the component of P0 is exponentially small and is given by

1/qN . It is clear that, for moderately large values of q and N one can obtain exponential

suppression of the P0 component at one boundary. If, at that boundary, we couple the

clockwork sector to the SM, we automatically obtain very small couplings of P0 to ordinary

particles, without introducing small parameters, multiple mass scales, or exponentially

large field multiplicities in the fundamental theory.

When P is a spin-0 scalar, spin-1/2 fermion, spin-1 boson, or spin-2 graviton, the cor-

responding symmetry S is a Goldstone shift symmetry, chiral symmetry, gauge symmetry,

and linearised 4D diffeomorphism invariance, respectively. Each case introduces new model

building applications. With a clockwork scalar one can construct invisible axion models

at the weak scale. A clockwork fermion can explain a very small Dirac neutrino mass or

address the hierarchical pattern of quark and lepton masses. With a clockwork gauge bo-

son one can justify the existence of tiny gauge charges, with phenomenological predictions

that differentiate from a scenario with simply a small gauge coupling. Finally, the most

exciting application is found with the clockwork graviton, which offers a novel solution to

the naturalness problem of the electroweak scale, providing a dynamical explanation for

the weakness of gravity. In this paper, we will mainly focus on the structural aspects of

the clockwork theory, leaving phenomenological issues to future work.
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Next, expand this simple setup to N+1 copies of the original system, and consider

them as sites of a one-dimensional lattice in theory space. The full theory possesses a

symmetry G, which contains at least the product of the individual symmetries (G ⊇ SN+1),

and describes N+1 massless particles P . Now, at a mass scale m, introduce an explicit, but

soft, breaking of the symmetry G which is local in theory space, through a mass mixing

linking near-neighbours of the N +1 lattice sites. Thus far the construction resembles

fields in a deconstructed flat extra dimension, [12–14], however the critical difference is

that this breaking includes a parameter q "= 1 that treats the site j+1 and the site j (with

j = 0, . . . , N−1) asymmetrically. As we are considering a 1D lattice with boundaries, we

can form only N links out of the N+1 sites. Since each link breaks the symmetry of a single

site, one symmetry group S0 survives the breaking of G; hence, one linear combination of

the original particles (called P0) remains massless.

The crucial aspect of the clockwork is that the particle P0 is not uniformly distributed in

theory space along the sites, but is exponentially localised towards one of the boundaries.

At the opposite boundary, the component of P0 is exponentially small and is given by

1/qN . It is clear that, for moderately large values of q and N one can obtain exponential

suppression of the P0 component at one boundary. If, at that boundary, we couple the

clockwork sector to the SM, we automatically obtain very small couplings of P0 to ordinary

particles, without introducing small parameters, multiple mass scales, or exponentially

large field multiplicities in the fundamental theory.

When P is a spin-0 scalar, spin-1/2 fermion, spin-1 boson, or spin-2 graviton, the cor-

responding symmetry S is a Goldstone shift symmetry, chiral symmetry, gauge symmetry,

and linearised 4D diffeomorphism invariance, respectively. Each case introduces new model

building applications. With a clockwork scalar one can construct invisible axion models

at the weak scale. A clockwork fermion can explain a very small Dirac neutrino mass or

address the hierarchical pattern of quark and lepton masses. With a clockwork gauge bo-

son one can justify the existence of tiny gauge charges, with phenomenological predictions

that differentiate from a scenario with simply a small gauge coupling. Finally, the most

exciting application is found with the clockwork graviton, which offers a novel solution to

the naturalness problem of the electroweak scale, providing a dynamical explanation for

the weakness of gravity. In this paper, we will mainly focus on the structural aspects of

the clockwork theory, leaving phenomenological issues to future work.

– 3 –

33

ν1
L

ν1
L

h

Y
ψ1

Rn11
, ψ2

Rn12
, ψ3

Rn13

J
H
E
P
0
2
(
2
0
1
7
)
0
3
6

Λ ΛN = qNΛ

Figure 1. A schematic representation of the clockwork mechanism increasing the interaction scale
of a non-renormalisable operator.

Next, expand this simple setup to N+1 copies of the original system, and consider

them as sites of a one-dimensional lattice in theory space. The full theory possesses a

symmetry G, which contains at least the product of the individual symmetries (G ⊇ SN+1),

and describes N+1 massless particles P . Now, at a mass scale m, introduce an explicit, but

soft, breaking of the symmetry G which is local in theory space, through a mass mixing

linking near-neighbours of the N +1 lattice sites. Thus far the construction resembles

fields in a deconstructed flat extra dimension, [12–14], however the critical difference is

that this breaking includes a parameter q "= 1 that treats the site j+1 and the site j (with

j = 0, . . . , N−1) asymmetrically. As we are considering a 1D lattice with boundaries, we

can form only N links out of the N+1 sites. Since each link breaks the symmetry of a single

site, one symmetry group S0 survives the breaking of G; hence, one linear combination of

the original particles (called P0) remains massless.

The crucial aspect of the clockwork is that the particle P0 is not uniformly distributed in

theory space along the sites, but is exponentially localised towards one of the boundaries.

At the opposite boundary, the component of P0 is exponentially small and is given by

1/qN . It is clear that, for moderately large values of q and N one can obtain exponential

suppression of the P0 component at one boundary. If, at that boundary, we couple the

clockwork sector to the SM, we automatically obtain very small couplings of P0 to ordinary

particles, without introducing small parameters, multiple mass scales, or exponentially

large field multiplicities in the fundamental theory.

When P is a spin-0 scalar, spin-1/2 fermion, spin-1 boson, or spin-2 graviton, the cor-

responding symmetry S is a Goldstone shift symmetry, chiral symmetry, gauge symmetry,

and linearised 4D diffeomorphism invariance, respectively. Each case introduces new model

building applications. With a clockwork scalar one can construct invisible axion models

at the weak scale. A clockwork fermion can explain a very small Dirac neutrino mass or

address the hierarchical pattern of quark and lepton masses. With a clockwork gauge bo-

son one can justify the existence of tiny gauge charges, with phenomenological predictions

that differentiate from a scenario with simply a small gauge coupling. Finally, the most

exciting application is found with the clockwork graviton, which offers a novel solution to

the naturalness problem of the electroweak scale, providing a dynamical explanation for

the weakness of gravity. In this paper, we will mainly focus on the structural aspects of

the clockwork theory, leaving phenomenological issues to future work.
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Figure 1. A schematic representation of the clockwork mechanism increasing the interaction scale
of a non-renormalisable operator.

Next, expand this simple setup to N+1 copies of the original system, and consider

them as sites of a one-dimensional lattice in theory space. The full theory possesses a

symmetry G, which contains at least the product of the individual symmetries (G ⊇ SN+1),

and describes N+1 massless particles P . Now, at a mass scale m, introduce an explicit, but

soft, breaking of the symmetry G which is local in theory space, through a mass mixing

linking near-neighbours of the N +1 lattice sites. Thus far the construction resembles

fields in a deconstructed flat extra dimension, [12–14], however the critical difference is

that this breaking includes a parameter q "= 1 that treats the site j+1 and the site j (with

j = 0, . . . , N−1) asymmetrically. As we are considering a 1D lattice with boundaries, we

can form only N links out of the N+1 sites. Since each link breaks the symmetry of a single

site, one symmetry group S0 survives the breaking of G; hence, one linear combination of

the original particles (called P0) remains massless.

The crucial aspect of the clockwork is that the particle P0 is not uniformly distributed in

theory space along the sites, but is exponentially localised towards one of the boundaries.

At the opposite boundary, the component of P0 is exponentially small and is given by

1/qN . It is clear that, for moderately large values of q and N one can obtain exponential

suppression of the P0 component at one boundary. If, at that boundary, we couple the

clockwork sector to the SM, we automatically obtain very small couplings of P0 to ordinary

particles, without introducing small parameters, multiple mass scales, or exponentially

large field multiplicities in the fundamental theory.

When P is a spin-0 scalar, spin-1/2 fermion, spin-1 boson, or spin-2 graviton, the cor-

responding symmetry S is a Goldstone shift symmetry, chiral symmetry, gauge symmetry,

and linearised 4D diffeomorphism invariance, respectively. Each case introduces new model

building applications. With a clockwork scalar one can construct invisible axion models

at the weak scale. A clockwork fermion can explain a very small Dirac neutrino mass or

address the hierarchical pattern of quark and lepton masses. With a clockwork gauge bo-

son one can justify the existence of tiny gauge charges, with phenomenological predictions

that differentiate from a scenario with simply a small gauge coupling. Finally, the most

exciting application is found with the clockwork graviton, which offers a novel solution to

the naturalness problem of the electroweak scale, providing a dynamical explanation for

the weakness of gravity. In this paper, we will mainly focus on the structural aspects of

the clockwork theory, leaving phenomenological issues to future work.
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Figure 1. A schematic representation of the clockwork mechanism increasing the interaction scale
of a non-renormalisable operator.

Next, expand this simple setup to N+1 copies of the original system, and consider

them as sites of a one-dimensional lattice in theory space. The full theory possesses a

symmetry G, which contains at least the product of the individual symmetries (G ⊇ SN+1),

and describes N+1 massless particles P . Now, at a mass scale m, introduce an explicit, but

soft, breaking of the symmetry G which is local in theory space, through a mass mixing

linking near-neighbours of the N +1 lattice sites. Thus far the construction resembles

fields in a deconstructed flat extra dimension, [12–14], however the critical difference is

that this breaking includes a parameter q "= 1 that treats the site j+1 and the site j (with

j = 0, . . . , N−1) asymmetrically. As we are considering a 1D lattice with boundaries, we

can form only N links out of the N+1 sites. Since each link breaks the symmetry of a single

site, one symmetry group S0 survives the breaking of G; hence, one linear combination of

the original particles (called P0) remains massless.

The crucial aspect of the clockwork is that the particle P0 is not uniformly distributed in

theory space along the sites, but is exponentially localised towards one of the boundaries.

At the opposite boundary, the component of P0 is exponentially small and is given by

1/qN . It is clear that, for moderately large values of q and N one can obtain exponential

suppression of the P0 component at one boundary. If, at that boundary, we couple the

clockwork sector to the SM, we automatically obtain very small couplings of P0 to ordinary

particles, without introducing small parameters, multiple mass scales, or exponentially

large field multiplicities in the fundamental theory.

When P is a spin-0 scalar, spin-1/2 fermion, spin-1 boson, or spin-2 graviton, the cor-

responding symmetry S is a Goldstone shift symmetry, chiral symmetry, gauge symmetry,

and linearised 4D diffeomorphism invariance, respectively. Each case introduces new model

building applications. With a clockwork scalar one can construct invisible axion models

at the weak scale. A clockwork fermion can explain a very small Dirac neutrino mass or

address the hierarchical pattern of quark and lepton masses. With a clockwork gauge bo-

son one can justify the existence of tiny gauge charges, with phenomenological predictions

that differentiate from a scenario with simply a small gauge coupling. Finally, the most

exciting application is found with the clockwork graviton, which offers a novel solution to

the naturalness problem of the electroweak scale, providing a dynamical explanation for

the weakness of gravity. In this paper, we will mainly focus on the structural aspects of

the clockwork theory, leaving phenomenological issues to future work.
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Figure 1. A schematic representation of the clockwork mechanism increasing the interaction scale
of a non-renormalisable operator.

Next, expand this simple setup to N+1 copies of the original system, and consider

them as sites of a one-dimensional lattice in theory space. The full theory possesses a

symmetry G, which contains at least the product of the individual symmetries (G ⊇ SN+1),

and describes N+1 massless particles P . Now, at a mass scale m, introduce an explicit, but

soft, breaking of the symmetry G which is local in theory space, through a mass mixing

linking near-neighbours of the N +1 lattice sites. Thus far the construction resembles

fields in a deconstructed flat extra dimension, [12–14], however the critical difference is

that this breaking includes a parameter q "= 1 that treats the site j+1 and the site j (with

j = 0, . . . , N−1) asymmetrically. As we are considering a 1D lattice with boundaries, we

can form only N links out of the N+1 sites. Since each link breaks the symmetry of a single

site, one symmetry group S0 survives the breaking of G; hence, one linear combination of

the original particles (called P0) remains massless.

The crucial aspect of the clockwork is that the particle P0 is not uniformly distributed in

theory space along the sites, but is exponentially localised towards one of the boundaries.

At the opposite boundary, the component of P0 is exponentially small and is given by

1/qN . It is clear that, for moderately large values of q and N one can obtain exponential

suppression of the P0 component at one boundary. If, at that boundary, we couple the

clockwork sector to the SM, we automatically obtain very small couplings of P0 to ordinary

particles, without introducing small parameters, multiple mass scales, or exponentially

large field multiplicities in the fundamental theory.

When P is a spin-0 scalar, spin-1/2 fermion, spin-1 boson, or spin-2 graviton, the cor-

responding symmetry S is a Goldstone shift symmetry, chiral symmetry, gauge symmetry,

and linearised 4D diffeomorphism invariance, respectively. Each case introduces new model

building applications. With a clockwork scalar one can construct invisible axion models

at the weak scale. A clockwork fermion can explain a very small Dirac neutrino mass or

address the hierarchical pattern of quark and lepton masses. With a clockwork gauge bo-

son one can justify the existence of tiny gauge charges, with phenomenological predictions

that differentiate from a scenario with simply a small gauge coupling. Finally, the most

exciting application is found with the clockwork graviton, which offers a novel solution to

the naturalness problem of the electroweak scale, providing a dynamical explanation for

the weakness of gravity. In this paper, we will mainly focus on the structural aspects of

the clockwork theory, leaving phenomenological issues to future work.

– 3 –



Thank you for your attention.

40


