Gravitational Production of Right－handed Neutrinos after QuINTESSENTIAL INFLATION

Phys．Lett．B798（2019） 135024 （arXiv：1905．12423［hep－ph］）

Soichiro Hashiba RESCEU，The University of Tokyo

Collaborator：Jun＇ichi Yokoyama

E Lab．seminar＠Nagoya University $15^{\text {th }}$ Jan． 2020

NOTATION

I will use following notations throughout this talk.

- Natural units
- Planck mass
- Minkowski metric

$$
: c=\hbar=k_{B}=1
$$

$$
: M_{G}=\sqrt{\hbar c / 8 \pi G} \approx 2.4 \times 10^{18} \mathrm{GeV}
$$

$: \eta_{\mu \nu}=\operatorname{diag}(-,+,+,+)$

OUTLINE

1．Mロさivヨさiロா

ङ．Gロחditigחミ \＆Cロחミナーヨint三

4．Diヨロコミシiロா
>1 ．Motivation 2．Meロんヨп i三m
ふ．Gonditions \＆Constraints 4．Diミロuミミiロா

1．Mロナ i vョを i ロா

INFLATIONARY COSMOLOGY WORKS VERY WELL！

INFLATION

Primordial fluctuation

Flatness

Homogeneity \＆

Isotropy

BUT．．．REMAINING PROBLEMS

－Baryon asymmetry
－Dark matter
－Dark energy
－Reheating

Solve by
Right－handed Majorana neutrinos
$+$
Quintessential inflation

4．DiEのいEシiのா

BARYOGENESIS VIA LEPTONS

Y．Fukuda et al．（Super－Kamiokande），Phys．Rev．Lett． 81 （1998） 1562.
－Right－handed neutrinos
Left－handed neutrinos are massive（cf．neutrino oscillation）
\Rightarrow Right－handed neutrinos MUST exist

Wolfram Demonstrations Project

BARYOGENESIS VIA LEPTONS

M．Fukugita and T．Yanagida，Phys．Lett．B174（1986） 45.
－Leptogenesis
A net lepton number can be produced by the decay of right－handed Majorana neutrinos

$$
\mathcal{L}_{N}=M_{i} \bar{N}_{i}^{c} N_{i}+h_{i \alpha} N_{i} L_{\alpha} H^{\dagger}
$$

BARYOGENESIS VIA LEPTONS

W．Buchmüller and M．Plümacher，Phys．Lett．B431（1998） 354.

－CP violation
Produced net lepton number per N_{i} decay is

$$
\begin{aligned}
\epsilon_{i} \equiv & \frac{\Gamma\left(N_{i} \rightarrow l+h\right)-\Gamma\left(N_{i} \rightarrow \bar{l}+\bar{h}\right)}{\Gamma_{i}} \\
& =-\frac{1}{8 \pi} \frac{\sum_{\alpha \neq i} \operatorname{Im}\left[\left\{\left(h h^{\dagger}\right)_{i \alpha}\right\}^{2}\right]}{\left(h h^{\dagger}\right)_{i i}}\left\{f^{\left.V\left(\frac{M_{\alpha}^{2}}{M_{i}^{2}}\right)+f^{M}\left(\frac{M_{\alpha}^{2}}{M_{i}^{2}}\right)\right\},} \begin{array}{l}
\text { Mixing } \\
\text { between } N_{3} \& N_{2}
\end{array} \text { One-loop vertex } \begin{array}{l}
\text { One-loop } \\
\text { self-energy }
\end{array}\right.
\end{aligned}
$$

き．МЕธトヨாiミm

BARYOGENESIS VIA LEPTONS

W．Buchmüller and M．Plümacher，Phys．Lett．B431（1998） 354.

－CP violation
where

$$
f^{V}(x)=\sqrt{x}\left[-1+(x+1) \ln \left(1+\frac{1}{x}\right)\right]
$$

BARYOGENESIS VIA LEPTONS

W．Buchmüller and M．Plümacher，Phys．Lett．B431（1998） 354.

－CP violation
＊This formula is valid when the masses are not so degenerate！ （compared with the decay width $\Gamma_{i, j}$ ）

1．$\left|M_{i}-M_{j}\right| \gg \Gamma_{i, j} \quad$ ：Our case
2．$\left|M_{i}-M_{j}\right| \sim \Gamma_{i, j} \quad$ ：ARS mechanism（Akhmedov＋1998） Resonant leptogenesis（Pilaftsis＋2004）

3．$\left|M_{i}-M_{j}\right|=0 \quad$ ：no CP violation $\left(\epsilon_{i}=0\right)$

NEUTRINO AS DARK MATTER

S．Dodelson and L．M．Widrow，Phys．Rev．Lett． 72 （1994）17．etc．
－Sterile neutrino
Right－handed neutrinos have NO weak interaction
\Rightarrow Sterile neutrino
$\sim 10 \mathrm{keV}$ sterile neutrino could account for whole dark matter！

K．Perez et al．，Phys．Rev．D95（2017） 123002.

QUINTESSENTIAL INFLATION

P．J．E．Peebles and A．Vilenkin，Phys．Rev．D59（1999） 063505.

－Quintessence
Inflation and late time acceleration by the same field

QUINTESSENTIAL INFLATION

A．D．Linde，Phys．Lett．108B（1982） 389.
－Slow－roll inflation
If the universe is dominated by perfect fluid with $p=w \rho$ ， the scale factor a obeys the Friedmann equation，

$$
\frac{\ddot{a}}{a}=-\frac{1}{6 M_{G}^{2}}(1+3 w) \rho \quad \begin{aligned}
& p: \text { pressure } \\
& \rho: \text { energy density }
\end{aligned}
$$

$$
w<-1 / 3 \Rightarrow \ddot{a}>0 \text { (accelerating) }
$$

Especially，if $w=-1$ ，then $\rho=$ const．and $a \propto e^{H t}$
inflation

QUINTESSENTIAL INFLATION

A．D．Linde，Phys．Lett．108B（1982） 389.
－Slow－roll inflation
In case of a scalar field，its energy density is

$$
\begin{aligned}
& \rho=\frac{1}{2} g^{\mu v} \partial_{\mu} \varphi \partial_{\nu} \varphi+V(\varphi) \\
& \rho=\frac{1}{2} \dot{\varphi}^{2}+V, \quad p=\frac{1}{2} \dot{\varphi}^{2}-V \\
& \Rightarrow \dot{\varphi}^{2} \ll V \text { realizes } p \approx-\rho \\
& \quad \text { slow roll } \quad \text { inflation }
\end{aligned}
$$

QUINTESSENTIAL INFLATION

P．J．E．Peebles and A．Vilenkin，Phys．Rev．D59（1999） 063505.

－End of inflation
Inflation ends when the inflaton starts to roll fast（ $\dot{\varphi}^{2} \gg V$ ）
\rightarrow Kinetic energy dominates the Universe（kination）

QUINTESSENTIAL INFLATION

P．J．E．Peebles and A．Vilenkin，Phys．Rev．D59（1999） 063505.

－Late time accelerating expansion
The inflaton decelerates by the Hubble friction， and finally，satisfies the slow roll condition again

EOM of the inflaton：$\ddot{\varphi}+3 H \dot{\varphi}+V^{\prime}(\varphi)=0$

REHEATING AFTER INFLATION

A．D．Dolgov and A．D．Linde，Phys．Lett．116B（1982） 329 etc．

－Reheating
Inflation ：Exponential expansion
\rightarrow Temperature extremely decreases（ $\lesssim e^{-50} T_{0}$ ）
the Universe must be reheated

Big bang ：Starts from quite high temperature（ $\gtrsim 1 \mathrm{MeV}$ ）

REHEATING AFTER INFLATION

A．D．Dolgov and A．D．Linde，Phys．Lett．116B（1982） 329 etc．
－Reheating by coherent oscillation
If the inflaton rolls down into a potential minimum，

coherent oscillation $=$ condensate of massive particle

decay into radiation via direct coupling

REHEATING AFTER INFLATION

A．D．Dolgov and A．D．Linde，Phys．Lett．116B（1982） 329 etc．
－Reheating by coherent oscillation
But，no coherent oscillation after quintessential inflation！
\rightarrow We must use another mechanism

φ

GRAVITATIONAL REHEATING

L．Parker，Phys．Rev． 183 （1969） 1057.
－Gravitational particle production
Vacuum state itself changes in a curved spacetime
\rightarrow Particle number increases
spacetime

vacuum state $\hat{a}|0\rangle_{i}=0$
new spacetime

new vacuum

$$
\hat{b}|0\rangle_{f}=0
$$

former vacuum

$$
\widehat{b}|0\rangle_{i} \neq 0
$$

GRAVITATIONAL REHEATING

L．Parker，Phys．Rev． 183 （1969） 1057.
－Gravitational particle production
Lagrangian for the conformally coupled massive scalar field χ in a curved spacetime is

$$
\mathcal{L}_{\varphi}=\sqrt{-\operatorname{det}\left(g_{\mu \nu}\right)}\left(-\frac{1}{2} g^{\mu \nu} \partial_{\mu} \chi \partial_{\nu} \chi-\frac{1}{2} m^{2} \chi^{2}-\frac{1}{12} R \chi^{2}\right)
$$

conformal coupling
（No direct effect from curvature）

GRAVITATIONAL REHEATING

L．Parker，Phys．Rev． 183 （1969） 1057.
－Gravitational particle production
Then，Equation of motion for the conformally coupled massive scalar field in terms of mode function χ_{k} is

$$
\begin{aligned}
& \frac{d^{2} \chi_{k}(\eta)}{d \eta^{2}}+\left(k^{2}+m^{2} a^{2}(\eta)\right) \chi_{k}(\eta)=0 \\
& \eta: \text { conformal time } a d \eta=d t
\end{aligned}
$$

Form of $a(\eta)$ changes
\Rightarrow Form of solution $\chi_{k}(\eta)$ changes（if NOT conformal invariant）
\Rightarrow Vacuum state changes！

GRAVITATIONAL REHEATING

L．Parker，Phys．Rev． 183 （1969） 1057.
－Gravitational particle production
The states of field and vacuum evolve differently

$$
t=t_{0} \quad \text { obey EOM } \quad t=t_{1}
$$

during $\mathrm{t}_{0} \sim t_{1}$
Field $\quad\left|\chi\left(t_{0}\right)\right\rangle=|0\rangle_{i}$
II
Vacuum

H $|0\rangle_{f}$

EOM at $t=t_{1}$

GRAVITATIONAL REHEATING

T．S．Bunch and P．C．W．Davies，Proc．Roy．Soc．Lond．A360（1978） 117.

－Adiabatic vacuum
How to define the＇vacuum＇state in curved spacetime？
＂State which coincides with the vacuum state in flat spacetime $\chi_{k}=\frac{1}{\sqrt{2 k}} e^{-i k \eta}$ at the adiabatic limit $k \rightarrow \infty$＂

Space－time

GRAVITATIONAL REHEATING

T．S．Bunch and P．C．W．Davies，Proc．Roy．Soc．Lond．A360（1978） 117.
－Adiabatic vacuum
e．g．In the case of de－Sitter space（＝during inflation），

$$
\chi_{k}=\frac{\sqrt{\pi|\eta|}}{2} H_{v}^{(1)}(k|\eta|)
$$

Bunch－Davies vacuum

GRAVITATIONAL REHEATING

SH and J．Yokoyama，Phys．Lett．B798（2019） 135024.

－Produced fermion energy density
$\rho \cong \mathbf{2 \times 1 0} 0^{-3} e^{-4 m \Delta t} m^{2} H_{\mathrm{inf}}^{2}$
m ：Fermion mass
Δt ：Transition time scale H_{inf} ：Hubble parameter during inflation

Coupling with inflaton is NOT needed！

GRAVITATIONAL REHEATING

－Produced fermion energy density
$\rho \cong 2 \times 10^{-3} e^{-4 m \Delta t} m^{2} H_{\mathrm{inf}}^{2}$

$=\frac{\rho_{\mathrm{inf}}}{3 M_{G}^{2}}(\because$ Friedmann eq．$)$

Planck suppressed （ \because gravitational）

OUR MODEL

－Right－handed majorana neutrinos

$$
\begin{aligned}
& \begin{array}{l}
N_{3}: M_{3} \sim 10^{13} \mathrm{GeV} \longrightarrow \text { Reheating } \\
N_{2}: M_{2} \sim 10^{11} \mathrm{GeV} \\
\text { Baryogenesis }
\end{array} \\
& N_{1}: M_{1} \sim 10 \mathrm{keV} \longrightarrow \text { Dark matter } \\
& \mathcal{L}_{N}=M_{i} \bar{N}_{i}^{c} N_{i}+h_{i \alpha} N_{i} L_{\alpha} H^{\dagger}
\end{aligned}
$$

In quintessential inflation with $H_{\text {inf }} \sim 10^{13} \mathrm{GeV}$

N_{1}
$\sim 10 \mathrm{keV}$

子心 Gロாミナトヨints

4．Di シロいミシiロா

ふ. Canditigns \& Constraints

N_{3} FOR REHEATING

- Decay of N_{3}
N_{3} decays into SM particles with decay rate Γ_{3}

N_{3} FOR REHEATING

- Reheating temperature

$$
T_{R H} \cong \mathbf{6} \times \mathbf{1 0}^{\mathbf{7}}\left(\frac{\sum_{\alpha}\left|h_{3 \alpha}\right|^{2}}{10^{-12}}\right)^{-\frac{1}{4}} e^{-3 M_{3} \Delta t}\left(\frac{M_{3}}{10^{13} \mathrm{GeV}}\right)^{\frac{5}{4}}\left(\frac{H_{\mathrm{inf}}}{10^{13} \mathrm{GeV}}\right)^{\frac{3}{4}} \mathrm{GeV}
$$

- Concealment of graviton

$$
\sum_{\alpha}\left|h_{3 \alpha}\right|^{2}<8.5 \times 10^{-11}
$$

~ Yukawa coupling of electron

"CONCEALMENT" OF GRAVITON

Gravitons are also gravitationally produced
They affect CMB spectrum and BBN (abundance of ${ }^{4} \mathrm{He}$)
Hence, they should be "concealed" by radiation

3. Conditions \& Constraints

N_{2} FOR BARYOGENESIS

- Baryon asymmetry

$$
\frac{n_{B}}{s}=\frac{28}{79} \frac{n_{L}}{s}
$$

$$
\begin{array}{r}
\approx 1 \times 10^{-3} \frac{\operatorname{Im}\left[\left\{\left(h h^{\dagger}\right)_{32}\right\}^{2}\right]}{\left(h h^{\dagger}\right)_{33}}\left(e^{-M_{3} \Delta t} \ln \frac{M_{3}}{M_{2}}\right)\left(\sum_{\alpha}\left|h_{3 \alpha}\right|^{2}\right)^{\frac{1}{4}} \frac{M_{2}}{M_{3}}\left(\frac{M_{3}}{H_{\mathrm{inf}}}\right)^{-\frac{1}{4}} \\
\downarrow n_{B} / s \approx 8.65(6) \times 10^{-11}
\end{array}
$$

$M_{2} \gtrsim 10^{11} \mathrm{GeV}$ and h_{22} or $h_{23} \gtrsim 10^{-3} \sqrt{M_{3} / M_{2}}$

N_{1} FOR DARK MATTER

－Split seesaw

If N_{1} is light（ $\sim 10 \mathrm{keV}$ ）while N_{3} and N_{2} are very heavy， these right－handed neutrinos can explain baryon asymmetry as well as dark matter（Kusenko＋2010）

Dark Matter

3. Conditions \& Constraints

N_{1} FOR DARK MATTER

- Stability

X-ray observations give constraints on decay rate of N_{1}
For $M_{1} \sim 10 \mathrm{keV}$,

$$
\sum_{\alpha}\left|h_{1 \alpha}\right|^{2}<10^{-26}
$$

Nu-STAR

1・ツ曰さ i リヨす i ロா

¥ッGロッ』itigns

3 4．Di三ロuミミiロா

ADEQUATE CREATION OF N_{1}

－（In）efficiency of production
Efficiency of gravitational particle production depends on deviation from conformality．
invariance under conformal transformation（e．g．expansion）

How to violate conformality？

ADEQUATE CREATION OF N_{1}

－Non－minimal coupling with scalar curvature
$\frac{R}{\mu} \bar{\psi} \psi \quad \mu:$ constant with unit mass dimension
$R=12 H_{\mathrm{inf}}^{2}$ during inflation，then this term gives huge effective mass to the fermion
（After inflation，R quickly vanishes）

ADEQUATE CREATION OF N_{1}

－Non－minimal coupling with scalar curvature

Gravitationally produce

$$
n \cong 1.1 \times 10^{-1} H_{\mathrm{inf}}^{5} / \mu^{2} \quad\left(\Delta t \approx H_{\mathrm{inf}}^{-1}\right)
$$

For adequate production，

$$
\mu \sim 10^{15} \mathrm{GeV}
$$

But undesirable instability appears．．．？

RELAXATION OF TUNING

L．Randall and R．Sundrum，Phys．Rev．Lett． 83 （1999） 3370.
－RS brane－world scenario
RS brane－world scenario can explain

TESTABILITY

－Detection of N_{1} X－ray observations have already given stringent constraints （i．e．$\sum_{\alpha}\left|\tilde{h}_{1 \alpha}\right|^{2}<10^{-26}$ ）
\rightarrow Future X－ray observation may detect a signal of N_{1} Of course，there are also base－line experiments and direct detection experiments

XRISM
（2021）－

eROSITA
2019－

MiniBooNE 2002－

DANSS
2016－ etc．

TESTABILITY

－Detection of N_{2} and N_{3}
Since N_{2} and N_{3} are quite heavy and fragile，they no longer remain nor are produced today
＝It is very difficult to directly detect them．．．

4．Disロusミiロா

TESTABILITY

Y．Akrami et al．，JCAP 1806 （2018） 041.
－Traces of quintessential inflation
However，quintessential inflation can be distinguished by large scale structure

LSST
（2020）－

DESI
2019－

SKA
（2020）－

4．Disロusミiロா

TESTABILITY

H．Tashiro et al．，Class．Quant．Grav． 21 （2004） 1761.
－Traces of quintessential inflation
However，quintessential inflation can be distinguished by large scale structure and primordial gravitational wave

DECIGO

LISA

BBO
in＇near＇future

TESTABILITY

－Traces of quintessential inflation
However，quintessential inflation can be distinguished by large scale structure and primordial gravitational wave
\rightarrow Their data tell us the properties of N_{2} and N_{3}（mass， decay rate etc．）

SUMMARY

- Gravitationally produced right-handed neutrinos after quintessential inflation can explain reheating, baryon asymmetry and dark energy simultaneously.
- Non-minimal coupling of right-handed neutrinos can provide adequate amount of dark matter.

Thank you for listening!

