GRAVITATIONAL PRODUCTION of RIGHT-HANDED NEUTRINOS after QUINTESSENTIAL INFLATION

Phys. Lett. B798 (2019) 135024 (arXiv:1905.12423 [hep-ph])

Soichiro Hashiba RESCEU, The University of Tokyo

Collaborator: Jun'ichi Yokoyama

E Lab. seminar @ Nagoya University 15th Jan. 2020

NOTATION

I will use following notations throughout this talk.

- Natural units
- Planck mass •

$$c = n = \kappa_B = 1$$

$$M_G = \sqrt{\hbar c / 8\pi G} \approx 2.4 \times 10^{18} \text{ GeV}$$

Minkowski metric

$$: \eta_{\mu\nu} = \text{diag}(-, +, +, +)$$

OUTLINE

- Motivation
- Mechanism
- 3. Conditions& Constraints
- Discussion

>1. Motivation

- Mechanism
- 3. Conditions & Constraints
- Discussion

Motivation

INFLATIONARY COSMOLOGY WORKS VERY WELL!

Motivation

BUT... REMAINING PROBLEMS

- Baryon asymmetry
- Dark matter
- Dark energy
- Reheating

Solve by

Right-handed Majorana neutrinos

Quintessential inflation

Motivation

> 2. Mechanism

3. Conditions & Constraints

Discussion

BARYOGENESIS VIA LEPTONS

Y. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 81 (1998) 1562.

Right-handed neutrinos

Left-handed neutrinos are massive (*cf.* neutrino oscillation) ⇒ Right-handed neutrinos **MUST** exist

BARYOGENESIS VIA LEPTONS

M. Fukugita and T. Yanagida, Phys. Lett. B174 (1986) 45.

Leptogenesis

A net lepton number can be produced by the decay of right-handed Majorana neutrinos

BARYOGENESIS VIA LEPTONS

W. Buchmüller and M. Plümacher, Phys. Lett. B431 (1998) 354.

CP violation

Produced net lepton number per N_i decay is

BARYOGENESIS VIA LEPTONS

W. Buchmüller and M. Plümacher, Phys. Lett. B431 (1998) 354.

CP violation

where

BARYOGENESIS VIA LEPTONS

W. Buchmüller and M. Plümacher, Phys. Lett. B431 (1998) 354.

CP violation

* This formula is valid when the masses are **not so degenerate!**

(compared with the decay width $\Gamma_{i,j}$)

- 1. $|M_i M_j| \gg \Gamma_{i,j}$: Our case
- 2. $|M_i M_j| \sim \Gamma_{i,j}$: ARS mechanism (Akhmedov+ 1998)

Resonant leptogenesis (Pilaftsis+ 2004)

3.
$$|M_i - M_j| = 0$$
 : no CP violation ($\epsilon_i = 0$)

NEUTRINO AS DARK MATTER

S. Dodelson and L. M. Widrow, Phys. Rev. Lett. 72 (1994) 17. etc.

Sterile neutrino

Right-handed neutrinos have NO weak interaction

⇒ Sterile neutrino

~10keV sterile neutrino could account for whole dark matter!

K. Perez et al., Phys. Rev. D95 (2017) 123002.

QUINTESSENTIAL INFLATION

P. J. E. Peebles and A. Vilenkin, *Phys. Rev.* **D59** (1999) 063505.

Quintessence

Inflation and late time acceleration by the same field

QUINTESSENTIAL INFLATION

A. D. Linde, *Phys. Lett.* **108B** (1982) 389.

Slow-roll inflation

If the universe is dominated by perfect fluid with $p = w\rho$, the scale factor *a* obeys the Friedmann equation,

$$\frac{\ddot{a}}{a} = -\frac{1}{6M_G^2}(1+3w)\rho$$

p : pressure ρ : energy density

 $w < -1/3 \Rightarrow \ddot{a} > 0$ (accelerating)

Especially, if w = -1, then $\rho = const$. and $a \propto e^{Ht}$ inflation

QUINTESSENTIAL INFLATION

A. D. Linde, *Phys. Lett.* **108B** (1982) 389.

Slow-roll inflation

In case of a scalar field, its energy density is

$$\rho = \frac{1}{2} g^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi + V(\varphi)$$

homogeneity & isotropy

$$\rho = \frac{1}{2}\dot{\phi}^2 + V, \qquad p = \frac{1}{2}\dot{\phi}^2 - V$$

$$\Rightarrow \dot{\varphi}^2 \ll V$$
 realizes $p \approx -\rho$

slow roll inflation

QUINTESSENTIAL INFLATION

P. J. E. Peebles and A. Vilenkin, *Phys. Rev.* **D59** (1999) 063505.

End of inflation

Inflation ends when the inflaton starts to roll **fast** ($\dot{\phi}^2 \gg V$)

 \rightarrow Kinetic energy dominates the Universe (kination)

QUINTESSENTIAL INFLATION

P. J. E. Peebles and A. Vilenkin, *Phys. Rev.* **D59** (1999) 063505.

 Late time accelerating expansion
 The inflaton decelerates by the Hubble friction, and finally, satisfies the slow roll condition again

REHEATING AFTER INFLATION

A. D. Dolgov and A. D. Linde, *Phys. Lett.* **116B** (1982) 329 *etc.*

• Reheating Inflation : Exponential expansion \rightarrow Temperature extremely decreases ($\leq e^{-50}T_0$) the Universe must be **reheated**

Big bang : Starts from quite high temperature ($\gtrsim 1 \text{ MeV}$)

REHEATING AFTER INFLATION

A. D. Dolgov and A. D. Linde, *Phys. Lett.* **116B** (1982) 329 *etc.*

• Reheating by coherent oscillation If the inflaton rolls down into a potential minimum,

REHEATING AFTER INFLATION

A. D. Dolgov and A. D. Linde, *Phys. Lett.* **116B** (1982) 329 *etc.*

Reheating by coherent oscillation
 But, no coherent oscillation after quintessential inflation!
 → We must use another mechanism

 $V(\varphi)$

GRAVITATIONAL REHEATING

L. Parker, *Phys. Rev.* **183** (1969) 1057.

Gravitational particle production
 Vacuum state itself changes in a curved spacetime
 → Particle number increases

GRAVITATIONAL REHEATING

L. Parker, *Phys. Rev.* **183** (1969) 1057.

Gravitational particle production
 Lagrangian for the conformally coupled massive scalar field *χ* in a curved spacetime is

$$\mathcal{L}_{\varphi} = \sqrt{-\det(g_{\mu\nu})} \left(-\frac{1}{2} g^{\mu\nu} \partial_{\mu} \chi \partial_{\nu} \chi - \frac{1}{2} m^{2} \chi^{2} - \frac{1}{12} R \chi^{2} \right)$$

conformal coupling

(No direct effect from curvature)

GRAVITATIONAL REHEATING

L. Parker, *Phys. Rev.* **183** (1969) 1057.

Gravitational particle production
 Then, Equation of motion for the conformally coupled
 massive scalar field in terms of mode function χ_k is

$$\frac{d^2\chi_k(\eta)}{d\eta^2} + \left(k^2 + m^2a^2(\eta)\right)\chi_k(\eta) = 0$$

$$\eta : \text{ conformal time } a \, d\eta = dt$$

Form of $a(\eta)$ changes

 \Rightarrow Form of solution $\chi_k(\eta)$ changes (if **NOT** conformal invariant)

⇒ Vacuum state changes!

GRAVITATIONAL REHEATING

L. Parker, *Phys. Rev.* **183** (1969) 1057.

Gravitational particle production
 The states of field and vacuum evolve differently

GRAVITATIONAL REHEATING

T. S. Bunch and P. C. W. Davies, *Proc. Roy. Soc. Lond.* A360 (1978) 117.

Adiabatic vacuum

How to define the 'vacuum' state in curved spacetime?

"State which coincides with the vacuum state in flat spacetime $\chi_k = \frac{1}{\sqrt{2k}} e^{-ik\eta}$ at the adiabatic limit $k \to \infty$ "

GRAVITATIONAL REHEATING

T. S. Bunch and P. C. W. Davies, Proc. Roy. Soc. Lond. A360 (1978) 117.

Adiabatic vacuum

e.g. In the case of de-Sitter space (= during inflation),

$$\chi_k = \frac{\sqrt{\pi|\eta|}}{2} H_{\nu}^{(1)}(k|\eta|)$$

Bunch-Davies vacuum

GRAVITATIONAL REHEATING

SH and J. Yokoyama, Phys. Lett. B798 (2019) 135024.

• Produced fermion energy density $ho\cong 2{ imes}10^{-3}e^{-4m\Delta t}m^2H_{
m inf}^2$

GRAVITATIONAL REHEATING

SH and J. Yokoyama, *Phys. Lett.* **B798** (2019) 135024.

OUR MODEL

• Right-handed majorana neutrinos $N_3: M_3 \sim 10^{13} \text{ GeV} \longrightarrow \text{Reheating}$ $N_2: M_2 \sim 10^{11} \text{ GeV} \longrightarrow \text{Baryogenesis}$ $N_1: M_1 \sim 10 \text{ keV} \longrightarrow \text{Dark matter}$ $\mathcal{L}_N = M_i \overline{N}_i^c N_i + h_{i\alpha} N_i L_{\alpha} H^{\dagger}$

In quintessential inflation with $H_{inf} \sim 10^{13} \text{ GeV}$

Motivation Mechanism Conditions Constraints Discussion

N₃ FOR REHEATING

• Decay of N₃

 N_3 decays into SM particles with decay rate Γ_3

N₃ FOR REHEATING

Reheating temperature

$$T_{RH} \cong \mathbf{6} \times \mathbf{10^7} \left(\frac{\sum_{\alpha} |h_{3\alpha}|^2}{10^{-12}} \right)^{-\frac{1}{4}} e^{-3M_3 \Delta t} \left(\frac{M_3}{10^{13} \text{GeV}} \right)^{\frac{5}{4}} \left(\frac{H_{\text{inf}}}{10^{13} \text{GeV}} \right)^{\frac{3}{4}} \text{GeV}$$

Concealment of graviton

$$\sum_{\alpha} |h_{3\alpha}|^2 < 8.5 \times 10^{-11}$$

~ Yukawa coupling of electron

"CONCEALMENT" OF GRAVITON

Gravitons are also gravitationally produced They affect CMB spectrum and BBN (abundance of ⁴He) Hence, they should be "concealed" by radiation

N₂ FOR BARYOGENESIS

Baryon asymmetry

$$\frac{n_B}{s} = \frac{28}{79} \frac{n_L}{s}$$

$$\approx 1 \times 10^{-3} \frac{\mathrm{Im}\left[\left\{\left(hh^{\dagger}\right)_{32}\right\}^{2}\right]}{(hh^{\dagger})_{33}} \left(e^{-M_{3}\Delta t} \ln \frac{M_{3}}{M_{2}}\right) \left(\sum_{\alpha} |h_{3\alpha}|^{2}\right)^{\frac{1}{4}} \frac{M_{2}}{M_{3}} \left(\frac{M_{3}}{H_{\mathrm{inf}}}\right)^{-\frac{1}{4}} \right)^{\frac{1}{4}} \frac{M_{2}}{M_{3}} \left(\frac{M_{3}}{H_{\mathrm{inf}}}\right)^{-\frac{1}{4}} \left(\frac{M_{3}}{M_{3}}\right) \left(\frac{M_{3}}{M_{3}}\right)^{\frac{1}{4}} \frac{M_{2}}{M_{3}} \left(\frac{M_{3}}{H_{\mathrm{inf}}}\right)^{-\frac{1}{4}} \right)^{\frac{1}{4}} \frac{M_{2}}{M_{3}} \left(\frac{M_{3}}{H_{\mathrm{inf}}}\right)^{-\frac{1}{4}} \left(\frac{M_{3}}{M_{3}}\right)^{\frac{1}{4}} \frac{M_{2}}{M_{3}} \left(\frac{M_{3}}{H_{\mathrm{inf}}}\right)^{-\frac{1}{4}} \frac{M_{2}}{M_{3}} \left(\frac{M_{3}}{H_{\mathrm{inf}}}\right)^{-\frac{1}{4}} \frac{M_{3}}{M_{3}} \left(\frac{M_{3}}{M_{3}}\right)^{\frac{1}{4}} \frac{M_{2}}{M_{3}} \left(\frac{M_{3}}{H_{\mathrm{inf}}}\right)^{\frac{1}{4}} \frac{M_{3}}{M_{3}} \left($$

 $M_2 \gtrsim 10^{11} \, \text{GeV}$ and $h_{22} \, \text{or} \, h_{23} \gtrsim 10^{-3} \sqrt{M_3/M_2}$

N₁ FOR DARK MATTER

Split seesaw

If N_1 is light (~10 keV) while N_3 and N_2 are very heavy, these right-handed neutrinos can explain baryon asymmetry as well as dark matter (Kusenko+ 2010)

3. Conditions & Constraints

N₁ FOR DARK MATTER

Stability

X-ray observations give constraints on decay rate of N_1

For $M_1 \sim 10$ keV,

$$\sum_{\alpha} |h_{1\alpha}|^2 < 10^{-26}$$

Nu-STAR

Motivation

- 2. Mechanism
- 3. Conditions & Constraints
- > 4. Discussion

ADEQUATE CREATION OF N_1

 (In)efficiency of production
 Efficiency of gravitational particle production depends on deviation from conformality.

invariance under conformal transformation (*e.g.* expansion)

How to violate conformality?

Mass term <

Non-conformal coupling \leftarrow Can we use this?

ADEQUATE CREATION OF N_1

Non-minimal coupling with scalar curvature

 $\frac{R}{\mu}\bar{\psi}\psi$ μ : constant with unit mass dimension

 $R = 12H_{inf}^2$ during inflation, then this term gives huge effective mass to the fermion (After inflation, *R* quickly vanishes)

ADEQUATE CREATION OF N_1

Non-minimal coupling with scalar curvature

 μ : constant with unit mass dimension

Gravitationally produce $n \approx 1.1 \times 10^{-1} H_{inf}^5 / \mu^2 \quad (\Delta t \approx H_{inf}^{-1})$

For adequate production, $\mu \sim 10^{15} \text{ GeV}$

But undesirable instability appears...?

RELAXATION OF TUNING

L. Randall and R. Sundrum, *Phys. Rev. Lett.* 83 (1999) 3370.

RS brane-world scenario
 RS brane-world scenario can explain

TESTABILITY

- Detection of N_1 X-ray observations have already given stringent constraints $(i.e. \sum_{\alpha} |\tilde{h}_{1\alpha}|^2 < 10^{-26})$
 - \rightarrow Future X-ray observation may detect a signal of N_1
 - Of course, there are also base-line experiments and direct detection experiments

TESTABILITY

- Detection of N₂ and N₃
 Since N₂ and N₃ are quite heavy and fragile, they no longer remain nor are produced today
 - = It is very difficult to directly detect them...

TESTABILITY

Y. Akrami et al., JCAP 1806 (2018) 041.

 Traces of quintessential inflation However, quintessential inflation can be distinguished by large scale structure

LSST (2020) -

DESI 2019 -

SKA (2020) -

TESTABILITY

H. Tashiro et al., Class. Quant. Grav. 21 (2004) 1761.

 Traces of quintessential inflation
 However, quintessential inflation can be distinguished by large scale structure and primordial gravitational wave

TESTABILITY

- Traces of quintessential inflation
 However, quintessential inflation can be distinguished by large scale structure and primordial gravitational wave
 - → Their data tell us the properties of N_2 and N_3 (mass, decay rate *etc.*)

SUMMARY

 Gravitationally produced right-handed neutrinos after quintessential inflation can explain reheating, baryon asymmetry and dark energy simultaneously.

• Non-minimal coupling of right-handed neutrinos can provide adequate amount of dark matter.

Thank you for listening!

Another choice of profile picture \rightarrow

in Tanna, Vanuatu