# What is the CFT dual of BPS black hole microstates? 

## Bin Guo

IPhT, Saclay

Based on: BG and Samir Mathur, I905.II923, I9|2.05567, 2008.0I274 BG, Marcel Hughes, Samir Mathur and Madhur Mehta 2208.07409

Nagoya University, I I.29.2022

## Outline

- Fuzzballs (black hole microstates)
- DID5 system

BPS states and lifting
CFT dual of multi-supergraviton states

## Fuzzballs (black hole microstates)

## Black hole

Solutions with a smooth horizon.


Including quantum effects, black holes can radiate.
Hawking radiation: Hawking pairs are created near the horizon which is a local vacuum. The radiation does not contain information about the matter placed at the singularity. The black hole information paradox (Hawking 1974).

Quantum mechanics and gravity are not consistent at the horizon.

From the second law of thermodynamics, black holes have entropy

$$
S=\frac{A}{4 G}
$$

No-hair theorems $\rightarrow$ no microstates
The entropy and the page curve can be reproduced in the Euclidean quantum gravity (the island formalism) without knowing the microstates.

Can we build these microstates?
What are their physical consequenses (observational effects)?

## Making BH microstates in string theory

String theory contains higher dimensions and various extended objects to make a consistent quantum theory including gravity.

To create a point mass, put lots of vibrating strings at a 'point'.


The growing of the size of strings is slower than the growing of the size of the horizon.

Cannot make microstates by using strings only.

Including D-branes and extra dimensions, the growing of the size is the same as the horizon.

not vacuum
(for non-BPS see
Mathur, 2005)
black hole

fuzzball


## Fuzzball

Fuzzballs are black hole microstates in string theory. They have no horizon or singularity. (Lunin and Mathur 2002, ...)

Fuzzballs radiate like a burning piece of coal. The radiation contains the information about the fuzzballs.
The information paradox is naturally resolved.
Many fuzzballs have been made in supergravity.

DID5 system

## Setup in string theory: DID5 system

String theory contains higher dimensions and various extended objects to make a consistent quantum theory including gravity.

String (I-d), DI-brane (I-d), D5-brane (5-d) ...
Build a 5-d black hole from the I0-d string theory
Compactification

$$
M_{4,1} \times S^{1} \times T^{4}
$$

$M_{4,1}:(4+\mathrm{I})$-d Minkowski
$S^{1}$ : a circle
$T^{4}$ : a 4-d torus

DID5 states: wrap $N_{1}$ DI-branes on $S^{1}$ and $N_{5}$ D5-branes on $S^{1} \times T^{4}$

$V\left(T^{4}\right) \rightarrow 0 \longrightarrow$ lives only on $S^{1}$ effectively
Low energy effective theory: DID5 CFT
I+I dimensional theory with $\mathcal{N}=(4,4)$ superconformal symmetry

## Symmetric orbifold

## Fractional momentum, brane

A graviton moving in a circle

$$
\Delta P \sim \frac{1}{L}
$$

$$
L
$$

A graviton moving in a $n_{1}$-wound string


$$
\Delta P \sim \frac{1}{n_{1} L}
$$

Total momentum is $n_{p} / L$

$$
P \sim \frac{n_{p}}{L} \sim \frac{n_{1} n_{p}}{n_{1} L} \quad n_{1} n_{p} \text { units of the fractional momentum }
$$

DID5 states: wrap $N_{1}$ DI-branes on $S^{1}$ and $N_{5}$ D5-branes on $S^{1} \times T^{4}$
$N_{1} N_{5}$ fractional DI-branes (effective strings)
Example $\quad N_{1} N_{5}=4$


There are multi-wound strings.
Strings having the same length (and excitations) are identical.
Symmetric orbifold $\quad M^{N_{1} N_{5}} / S_{N_{1} N_{5}}$

## Building blocks of states at the orbifold point

- Component string of winding $k$ (a closed loop with length $2 \pi k$ )
- Left $(P)$ and right $(\bar{P})$ moving excitations (4 bosons +4 fermions)


Left moving ( P excitations): 4 free bosons +4 free fermions


$$
\alpha_{A \dot{A},-n} \quad d_{-n^{2}}^{\alpha A} \quad \stackrel{\text { momentum }}{(\text { left moving dimension } h)}
$$

Right moving: $\quad \bar{\alpha}_{A \dot{A},-n} \quad \bar{d}_{-n^{\swarrow}}^{\bar{\alpha} A}$ right moving dimension $\bar{h}$
(4,4) supersymmetry: $\quad G_{\dot{A},-n}^{\alpha} \quad \bar{G}_{\dot{A},-n}^{\bar{\alpha}}$
A state is composed of component strings with total winding N .


N singly wound strings


N/2 doubly wound strings

# Moving away from the orbifold point (adding interactions) 

$A d S_{3} /$ CFT $_{2}$
Tensionless string on $A d S_{3} \times S^{3} \times T^{4}$ is dual to the symmetric orbifold $\left(T^{4}\right)^{N} / S_{N}\left(C F T_{2}\right) \quad$ (Eberhardt, Gabriel and Gopakumar, 2019...)


A single string with winding k in the bulk

## CFT



A component string with winding $k$ on the symmetric orbifold

$$
g_{s} \sim \frac{1}{\sqrt{N}}
$$

## Adding interaction with coupling $\lambda$ in the CFT

Adding tension, RR flux... in the AdS


A graviton in the AdS corresponds to a component string in the CFT. (de Boer, 1998)

## Superstrata (multi-graviton states)

## CFT state

(Bena, Giusto, Martinec, Russo, Shigemori, Turton and Warner, 2016...)


vacuum


## Many component strings with each corresponding to a graviton

## Interaction

$$
S \rightarrow S+\lambda \int d^{2} z D(z, \bar{z}) \quad D=\frac{1}{4} \epsilon^{\dot{A} \dot{B}_{\alpha \beta}} \epsilon_{\bar{\alpha} \bar{\beta}} G_{\dot{A},-\frac{1}{2}}^{\alpha} \bar{G}_{\dot{B},-\frac{1}{2}}^{\bar{\alpha}} \sigma^{\beta \bar{\beta}}
$$

Twist operator: join two strings or break a string

$$
\sigma: \quad\left(k_{i}, k_{j}\right) \leftrightarrow\left(k_{i}+k_{j}\right)
$$


(I) Excitations live on strings cannot interact directly but through the joining or breaking of strings.
(2)Change length of strings important in this talk

## BPS states and lifting

## BPS states

(4,4) supersymmetry: $\quad G_{\dot{A}, 0}^{\alpha} \quad \bar{G}_{\dot{A}, 0}^{\bar{\alpha}} \quad$ R sector

$$
\left\{G_{\dot{A}, 0}^{\alpha}, G_{\dot{B}, 0}^{\beta}\right\}=\epsilon_{\dot{A} \dot{B}} \epsilon^{\alpha \beta} h \quad\left\{\bar{G}_{\dot{A}, 0}^{\alpha}, \bar{G}_{\dot{B}, 0}^{\beta}\right\}=\epsilon_{\dot{A} \dot{B}} \epsilon^{\bar{\alpha} \bar{\beta}} \bar{h}
$$

Raising operators:

$$
G_{+, 0}^{+} \quad G_{-, 0}^{+} \quad \bar{G}_{+, 0}^{+} \quad \bar{G}_{-, 0}^{+}
$$

At orbifold point
$\phi: h \neq 0, \quad \bar{h} \neq 0$


$$
\begin{array}{llll}
G_{+, 0}^{+} & G_{-, 0}^{+} & \bar{G}_{+, 0}^{+} & \bar{G}_{-, 0}^{+}
\end{array}
$$

A multiplet containing 16 states (a long multiplet, non-BPS)
$\phi: h \neq 0, \quad \bar{h}=0$


$$
G_{+, 0}^{+} \quad G_{-, 0}^{+} \quad \bar{G}_{+, 0}^{+\pi} \quad \bar{G}_{-, 0}^{+^{\top}}
$$

A multiplet containing 4 states (a short multiplet, BPS)
Away from the orbifold point (adding interaction) $\phi: h \neq 0, \quad \bar{h}=0$


4 short multiplets must join into a long multiplet

$h \neq 0, \quad \bar{h} \neq 0 \quad h-\bar{h} \in Z$

## Lifting problem

What is $\delta \bar{G}_{\dot{A}, 0}^{\alpha}$ ?
Which 4 states join into a long multiplet and lift?
What is the value of the lift $\delta h$ ?
Which states are unlifted?
Superstrata are BPS states in supergravity. Their CFT dual should be BPS (unlifted) in the limit $\lambda \rightarrow 0$.

## The Gava-Narain method

## The Gava-Narain Method

(Gava and Narain, 2002, BG and Mathur, 20I9 )

$\epsilon \geq 0 \longrightarrow$ lifting starts at $O\left(\lambda^{2}\right)$
4 short multiplets join into a long multiplet by

$$
\delta \bar{G}_{\dot{A}, 0}^{\alpha}=\bar{G}_{\dot{A}, 0}^{\bar{\alpha}(P)}=\pi \mathcal{P} G_{\dot{A},-\frac{1}{2}}^{+} \sigma_{\substack{-\bar{\alpha}}}^{\mathcal{P}} \begin{aligned}
& \text { projects states } \\
& \text { into level }(\mathrm{n}, 0)
\end{aligned}
$$

The energy is lifted by $E^{(2)}=\delta h+\delta \bar{h}$

$$
\begin{aligned}
& \text { Only level (n,0) contribute } \\
& \epsilon_{\dot{A} \dot{B}} \dot{\epsilon}^{\bar{\alpha} \bar{\beta}} E_{b a}^{(2)}=2 \lambda^{2}\left\langle O_{b}^{(0)}\right|\left\{\begin{array}{c}
\left.\bar{G}_{\dot{A}, 0}^{\bar{\alpha}(P) \downarrow}, \bar{G}_{\dot{B}, 0}^{\bar{\beta}(P)}\right\}
\end{array}\right\}\left|O_{a}^{(0)}\right\rangle
\end{aligned}
$$

Diagonalize the matrix $E^{(2)}$. The eigenvalues are the values of the lift. The corresponding eigenstates are the lifted states.
(I) The 4 short multiplets have the same lift.
(2) Descendants have the same lift as their primary.

## Lifting for total winding two

## Total winding two


two singly wound strings

one doubly wound string
level-I: $h=1$ 2688 states 12 primaries

Number of primaries

| level | sector | $\chi_{j=1, h}^{l} \bar{\chi}_{\bar{j}_{3}=-1}$ | $\chi_{j=1, h}^{l} \bar{\chi}_{\bar{\chi}_{3}=-1 / 2}$ | $\chi_{j=1, h}^{l} \bar{\chi}_{\bar{\chi}_{3}=0}$ | sector | $\chi_{j=1, h}^{l} \bar{\chi}_{\bar{j}_{3}=-1 / 2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\phi$ | unlifted | $\phi_{+-}$ |  | $\phi_{+,} \phi_{-}$, unlifted |
| $h=1$ | $(1,1)$ | 3 | 0 | 3 | $(2)$ | 6 |
| $h=2$ | $(1,1)$ | 1 | 16 | 1 | $(2)$ | 28 |
| $h=3$ | $(1,1)$ | 18 | 8 | 18 | $(2)$ | 98 |
| $h=4$ | $(1,1)$ | 15 | 72 | 15 | $(2)$ | 282 |
| $h=5$ | $(1,1)$ | 68 | 80 | 68 | $(2)$ | 728 |
| $h=6$ | $(1,1)$ | 89 | 264 | 89 | $(2)$ | 1734 |

Index

$$
\begin{aligned}
& \bar{j}_{3}+1 / 2 \\
& \bar{G}_{+, 0}^{+(P)} \nearrow{ }^{\phi_{+}} \underbrace{\bar{G}_{-0}^{+(P)}}_{\searrow}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{j}_{3}+1 / 2
\end{aligned}
$$

States allowed to be lifted by index and the twist nature of $\delta \bar{G}_{\dot{A}, 0}^{\alpha}$ ?

| level | sector | $\chi_{j=1, h}^{l} \bar{\chi}_{\bar{j}_{3}=-1}$ | $\chi_{j=1, h}^{l} \bar{\chi}_{\bar{j}_{3}=-1 / 2}$ | $\chi_{j=1, h}^{l} \bar{\chi}_{\bar{j}_{3}=0}$ | sector | $\chi_{j=1, h}^{l} \bar{\chi}_{\bar{\chi}_{3}=-1 / 2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\phi$ | unlifted | $\phi_{+-}$ |  | $\phi_{+}, \phi_{-}$, unlifted |
| $h=1$ | $(1,1)$ | 3 | 0 | 3 | $(2)$ | 6 |
| $h=2$ | $(1,1)$ | 1 | 16 | 1 | $(2)$ | 28 |
| $h=3$ | $(1,1)$ | 18 | 8 | 18 | $(2)$ | 98 |
| $h=4$ | $(1,1)$ | 15 | 72 | 15 | $(2)$ | 282 |
| $\bar{h}=\overline{5}$ | $(\overline{1}, 1)$ | 68 | 80 | 68 | $(2)$ | 728 |
| $h=6$ | $(1,1)$ | 89 | 264 | 89 | $(2)$ | 1734 |

$$
a=c \leq b / 2
$$

All states in a and care allowed to be lifted.
We have checked that up to level-4 they are indeed lifted by $\delta \bar{G}_{\dot{A}, 0}^{\alpha}$.
If it is true for any level,
(I) The deformation is complicated enough to saturate the index.
(2) No extra symmetry to protect states.

Lifted states come from both the untwisted and twisted sectors. There are unlifted states in the untwisted sector (colum b).
corresponding BPS supergravity solutions?

## Universality of lifting

## Universality

Excite only one string.


The expectation value of the lift

$$
\left\langle E^{(2)}\right\rangle=2 \lambda^{2}\langle\phi|\left\{\bar{G}_{+, 0}^{-(P)}, \bar{G}_{-, 0}^{+(P)}\right\}|\phi\rangle
$$



$$
\times \phi
$$

$\bar{G}_{+, 0}^{-(P)} \quad$ - covering map

$$
\times \phi
$$

Universality two-point function

Excite only one string with a primary. A special class in column a.

A primary of a singly wound string has $j=0$.

$$
\left\langle E^{(2)}\right\rangle=\frac{\lambda^{2} \pi^{2}}{2^{2 h-1}} \frac{\Gamma(2 h)}{\Gamma[h]^{2}} \approx \lambda^{2} \pi^{\frac{3}{2}} \sqrt{h}+O\left(h^{-\frac{1}{2}}\right)
$$

It depends only on the dimension $h$ but not the details of the primary (universality).
They are nonzero, which supports the lifting conjecture for total winding two.
$\sqrt{h}$ behavior also found in other cases


# Multi-supergraviton states 

## generic states


$\alpha_{A \dot{A},-n} \quad d_{-n}^{\alpha A}$

## supergraviton states

(for a review see
Shigemori, superstrata)
rigid generators of the superconformal symmetry

$$
L_{-1} \quad \not K_{-(n>1)}^{\pi} \quad \cdots
$$

Enough gravitons $\longrightarrow$ black hole, fuzzball (superstratum)


## Lifted or unlifted?

$\delta \bar{G}_{\dot{A}, 0}^{\alpha}$ can join any two component strings

lifted

unlifted

unlifted

Lift of multi-supergraviton states in the large N limit
$N_{1}$ gravitons $\quad E^{(2)} \sim \lambda^{2} N_{1}^{2} \sim \frac{g^{2}}{N} N_{1}^{2} \quad g \equiv \lambda \sqrt{N}$
$N_{1} \sim O(1) \quad$ (low lying states) $\quad E^{(2)} \sim g^{2} O\left(N^{-1}\right) \quad$ unlifted
$N_{1} \sim O(N)$ (superstrata) $\quad E^{(2)} \sim g^{2} O(N) \quad$ lifted
Can we modify it to be unlifted?

Mixing with long string states

a triply wound string

lifted state (naive CFT state)
unlifted state
a triply wound string

$O\left(N^{-1 / 2}\right)$ correction
(Benjamin, Keller and Zadeh, 202I)
$O\left(N^{1 / 2}\right)$ correction
$N_{1} \sim O(N) \quad$ (superstrata)
The corrections do not depend on the coupling.

Taking the coupling to zero, the unlifted states should be the CFT dual of BPS black hole microstates.

Long string states are important when the number of super gravitons is large $\sim N$.
The naive CFT states are completely changed.

## Thank you

