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• Bell inequalities have been formulated in 1964 by John Bell.

Bell inequalities

• Bell inequalities are very powerful!: derived only by assuming locality and 
reality of physical observables.

• Bell inequalities must be satisfied for any local-real hidden variable theories.

• QM is neither local nor real.  Indeed Bell inequalities can be violated in QM. 

• In 1970’s-80’s, the violation of Bell inequalities have been experimentally 
confirmed.  The laws of physics cannot be both local and real.  Local-real 
hidden variable theories were falsified.   

Crauser, Horne, Shimony, Holt (1969), 

Freedman and Clauser (1972),

A. Aspect et. al. (1981, 1982),

Y. H. Shih, C. O. Alley (1988), 

L. K. Shalm et al. (2015) [5σ]
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Physical observables (positions, momentum, etc.) have certain 
values regardless of the measurements (even when nobody looks).

Reality:

The effect of an event at point-A cannot propagate faster than the 
speed of light to another point-B.

Locality:

(In special relativity, the causality is broken if information travels 
faster than the speed of light.)

[Einstein, Podolsky, Rosen 1935]



α (spin 1/2) β (spin 1/2)

δ (spin 0)Alice Bob

• Alice and Bob measure the spin Z-component of their particles.


• Their results look random, but 100% anti-correlated.

⟨Sα
z ⋅ Sβ

z ⟩ = − 1

Alice + + - + - - + + + - + -

Bob - - + - + + - - - + - +

Alice 
x Bob - - - - - - - - - - - -



|Ψ(0,0)⟩ ≐
| +z −z ⟩ − | −z +z ⟩

2

In QM, the state is:

SZ of Alice’s particle is in a superposition of +1 and -1.  Not real 



|Ψ(0,0)⟩ ≐
| +z −z ⟩ − | −z +z ⟩

2

In QM, the state is:

+Z

| +z −z ⟩

the state collapses by 
the Alice’s measurement 

guarantees that      
Bob measures -1,  
100% anti-correlation 

Not local

−Z



The origin of this bizarre feature is entanglement. 

|Ψ⟩ ≐ c11 | +z +z ⟩ + c12 | +z −z ⟩ + c21 | −z +z ⟩ + c22 | −z −z ⟩

|Ψsep⟩ ≐ [ cα
1 | +z ⟩ + cα

2 | −z ⟩ ] ⊗ [ cβ
1 | +z ⟩ + cβ

2 | −z ⟩ ]

general:

separable:

separable

|Ψsep⟩

general stats |Ψ⟩



The origin of this bizarre feature is entanglement. 

| + ⟩z

Bob’s local state is intact
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measurement
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The origin of this bizarre feature is entanglement. 

|Ψent⟩ ≐ [ cα
1 | + ⟩z + cα

2 | − ⟩z ] ⊗ [ cβ
1 | + ⟩z + cβ

2 | − ⟩z ]
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• Assuming the reality, Alice’s result is predetermined before her measurement.

• The spin components of Bob’s particle are also predetermined and not affected by 
Alice’s measurement by the locality assumption. 

sα
Z sβ

Z

• Without loss of generality, we can parametrise their spin components by a set of 
parameters , which appears with the probability  in each decay.λ P(λ)

(λ) (λ)

⟨sα
Z ⋅ sβ

Z⟩ = ∑
λ

P(λ) sα
Z(λ) sβ

Z(λ) = − 1

• The spin correlation is given by

P(λ) ≥ 0, ∑
λ

P(λ) = 1



α (spin 1/2) β (spin 1/2)

δ (spin 0)Alice Bob

The experiment consists of 4 sessions:

Finally, we calculate: RCHSH ≡
1
2

⟨sasb⟩ − ⟨sasb′ ⟩ + ⟨sa′ sb⟩ + ⟨sa′ sb′ ⟩

1) Alice and Bob measure  and , respectively.      
Repeat the measurement many times and calculate 

.   


2) Repeat (1) for  and .


3) Repeat (1) for  and .


4) Repeat (1) for  and . 

sα
a sβ

b

⟨sa ⋅ sb⟩

a b′ 

a′ b
a′ b′ 

(sz)

(sx)

â

â′ 

(s↗)

(s↘)

b̂

b̂′ 
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4) Repeat (1) for  and . 

sα
a sβ

b

⟨sa ⋅ sb⟩

a b′ 

a′ b
a′ b′ 

Finally, we calculate: RCHSH ≡
1
2

⟨sasb⟩ − ⟨sasb′ ⟩ + ⟨sa′ sb⟩ + ⟨sa′ sb′ ⟩

Local and Real  ≤ 1RCHSH
Bell (CHSH) inequality 
[Clauser, Horne, Shimony, Holt, 1969]

(sz)

(sx)

â

â′ 

(s↗)

(s↘)

b̂

b̂′ 



∑
λ

abP − ∑
λ

ab′ P⟨ab⟩ − ⟨ab′ ⟩ =

RCHSH ≡
1
2

⟨ab⟩ − ⟨ab′ ⟩ + ⟨a′ b⟩ + ⟨a′ b′ ⟩ ≤ 1Let’s derive

⟨sα
a ⋅ sβ

b ⟩ = ⟨ab⟩ = ∑
λ

a(λ) b(λ) P(λ) = ∑
λ

ab P



4 Bell’s inequality

One can derive an interesting inequality that must be held for hidden variable theories. Let’s consider
the following experiments:

1. Choose four unit vectors, ~a, ~a0, ~b and ~b0. We denote the spin component in the ~a direction by
sa, and so on.

2. Prepare a lot of e-ē pairs coming from decays of the spin 0 particles.

3. We divide the sample into four subsamples, (i), (ii), (iii), (iv).

4. In the subsample (i), Alice measures sa and Bob measures sb.

5. In the subsample (ii), Alice measures sa and Bob measures sb0 .

6. In the subsample (iii), Alice measures sa0 and Bob measures sb.

7. In the subsample (iv), Alice measures sa0 and Bob measures sb0 .

In hidden variable theories, each e-ē pair in a sample is described by a set of variables �. In the
i-th pair in a sample, Alice’s outcome of her sa measurement is a(�i) and Bob’s outcome of his sb

measurement is b(�i). If sa and sb are the same spin component, we have a(�i) = �b(�i), but this is
not satisfied in the general case with sa 6= sb.

Bell’s inequality considers the average of the product of Alice and Bob’s measurement outcomes.
For example, for the subset (i), we denote the average of ab by habi. In hidden variable theories this
can be calculated as

habi =
1

N

NX

i=1

a(�i)b(�i) , (4.5)

where N is the number of e-ē pairs in the subset (i). If we know the probability density, P (�), the
same average can be computed as

habi =

Z
a(�)b(�)P (�)d� . (4.6)

Since P (�) is a probability density, we have
Z

P (�)d� = 1 . (4.7)

Derivation of Bell’s inequality

Let’s consider the quantity

|habi � hab0i| =

����
Z

d� (ab � ab
0)P

���� , (4.8)

where we suppressed � in the RHS. Here we made an implicit assumption that the probability density
P (�) is common for the subsamples (i) and (ii). In the next step we will assume P (�) is common for
the all subsamples. By adding ± aba

0
b
0
P � (± aba

0
b
0
P ) = 0 to the RHS, we have

|habi � hab0i| =

Z
d� |ab(1 ± a

0
b
0)P � ab

0(1 ± a
0
b)P | ,


Z

d�

⇣
|ab||1 ± a

0
b
0|P + |ab0||1 ± a

0
b|P

⌘
. (4.9)

2

∑
λ

abP − ∑
λ

ab′ P

= ∑
λ

[ab(1 ± a′ b′ )P − ab′ (1 ± a′ b)P]

⟨ab⟩ − ⟨ab′ ⟩ =

RCHSH ≡
1
2

⟨ab⟩ − ⟨ab′ ⟩ + ⟨a′ b⟩ + ⟨a′ b′ ⟩ ≤ 1Let’s derive

⟨sα
a ⋅ sβ

b ⟩ = ⟨ab⟩ = ∑
λ

a(λ) b(λ) P(λ) = ∑
λ

ab P
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(â ⋅ b̂) − (â ⋅ b̂′ ) + (â′ ⋅ b̂) + (â′ ⋅ b̂′ )
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{ 1

2

(HV theories)

(QM)

|Ψ(0,0)⟩ ≐
| + − ⟩z − | − + ⟩z

2

separable

|Ψsep⟩

entangled |Ψent⟩

general stats |Ψ⟩

Bell nonlocal
RCHSH > 1

- Entangled photon pairs (from decays of Calcium atoms)
Clauser, Horne, Shimony, Holt (1969), Freedman and Clauser (1972), A. Aspect 
et. al. (1981, 1982), Y. H. Shih, C. O. Alley (1988), L. K. Shalm et al. (2015) [5σ]

- Entangled proton pairs (from decays of 2He)
M. M. Lamehi-Rachti, W. Mitting (1972), H. Sakai (2006)

-  flavour oscillationK0K0, B0B0 CPLEAR (1999), Belle (2004, 2007) 

✤ Violation of Bell inequalities has been observed in low energy experiments: 



Can we test Bell inequality and entanglement at high energy colliders?

Bell inequality and entanglement have not been tested at high energy regime E ~ TeV

- Entanglement in  @ LHCpp → tt̄

- Bell inequality test in  @ LHCH → WW*

- Bell inequality test in  @ LHCpp → tt̄

Y. Afik, J. R. M. de Nova (2020)

M. Fabbrichesi, R. Floreanini, G. Panizzo (2021)

C. Severi, C. D. Boschi, F. Maltoni, M. Sioli (2021)

J. A. Aguilar-Saavedra, J. A. Casas (2022)


A. J. Barr (2021)

- Quantum property test in  @ high energy  collidersH → τ+τ− e+e− this talk



5.2 Case for general quantum sates

5.2.1 The density operator

Let’s consider a situation where we have a quantum state | ki with probability pk. In this case, we
can describe the system with the density operator defined by

⇢̂ ⌘
X

k

pk| kih k| (5.19)

with
0  pk  1,

X

k

pk = 1 , (5.20)

since pk is probability. Using an orthonormal basis, {|e↵i}, with he↵|e�i = �↵� and
P

↵
|e↵ihe↵| = 1,

one can give a matrix representation (density matrix)

⇢↵� ⌘ he↵|⇢̂|e�i . (5.21)

The density operator (matrix) satisfies the following properties:

• ⇢̂
† = ⇢̂

• Tr ⇢̂ = 1

• ⇢̂ is positive definite, that is 8|'i; h'|⇢̂|'i � 0.

The second property holds since

Tr ⇢̂ ⌘
X

i

he↵|⇢̂|e↵i =
X

↵,k

pkh k|e↵ihe↵| ki =
X

k

pk = 1 . (5.22)

Conversely, if one finds an operator satisfying the above three properties, there exists a corresponding
quantum state associated with it. Using the density operator, the expectation value of an observable,
Â, can be calculated as

hÂi = Tr
h
Â⇢̂

i
(5.23)

since the RHS is
X

↵,k

pkhe↵|Â| kih k|e↵i =
X

↵,k

pkh k|e↵ihe↵|Â| ki =
X

k

pkh k|Â| ki . (5.24)

As an example, let’s consider the EPR singlet state (s, sz) = (0, 0), | (0,0)

EPR
i .
= |"zi|#zi�|#zi|"zip

2
. By taking

the orthogonal basis as

(|e1i, |e2i, |e3i, |e4i) = (| "z"zi, | "z#zi, | #z"zi, | #z#zi) (5.25)

we have

⇢̂
EPR,(0,0) =

1

2
(|e2i � |e3i) (he2| � he3|)

=
1

2
(|e2ihe2| + |e3ihe3|) � 1

2
(|e2ihe3| + |e3ihe2|) (5.26)

and

⇢
EPR,(0,0)

↵�
= he↵|⇢̂EPR,(0,0)|e�i =

0
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density operator/matrix  
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⇢ab ⌘ hea|⇢̂|ebi
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hea|ebi = �ab

⟨ ̂A⟩ρ = Tr [ ̂A ̂ρ]

Density operator 

P(a | ̂A, ̂ρ) = ⟨a |ρ |a⟩ Probability for outcome  when  is measured on the state a ̂A ̂ρ

Expectation value for  on the state ̂A ̂ρ

̂A |a⟩ = a |a⟩

• Probability and expectation values:



• The spin system of  and  particles has 4 independent bases:α β

• ==>  is a 4 x 4 matrix (hermitian, Tr=1, non-negative).   

It can be expanded as  

ρab

• For the spin operators  and ,  ̂sα ̂sβ

⟨ ̂sα
i ⟩ = Tr [ ̂sα

i ̂ρ] = Bi

( |e1⟩, |e2⟩, |e3⟩, |e4⟩ ) = ( | + + ⟩, | + − ⟩, | − + ⟩, | − − ⟩ )

⟨ ̂sβ
i ⟩ = Tr [ ̂sβ

i ̂ρ] = Bi ⟨ ̂sα
i ̂sβ

j ⟩ = Tr [ ̂sα
i ̂sβ

j ̂ρ] = Cij

3 x 3 matrix

spin-spin correlation

Spin 1/2 biparticle system

ρ =
1
4 (14 + Bi ⋅ σi ⊗ 1 + Bi ⋅ 1 ⊗ σi + Cij ⋅ σi ⊗ σj) Bi, Bi, Cij ∈ ℝ



H → τ+τ−

ℒint = −
mτ

vSM
κH ψ̄τ(cos δ+iγ5 sin δ) ψτ SM:   (κ, δ) = (1,0)



ℒint = −
mτ

vSM
κH ψ̄τ(cos δ+iγ5 sin δ) ψτ

3

with

pQ(b|B,�) ⌘ Tr[⇢B(�)F
B
b
], (13)

where ⇢B(�) is Bob’s local state and FB
b

is Bob’s positive
operator valued measure (POVM). By definition, all Bell-
nonlocal states are steerable. Also, if states are separable,
the probability of measurement outcomes can be written
in a form of Eqs. (12) and (13). Namely, the following
hierarchy is established:

Entangled � Steerable � Bell-nonlocal . (14)

III. QUANTUM AND CP PROPERTIES OF
H ! ⌧

+
⌧
�

In H ! ⌧+⌧�, the spins of two taus form a two-qubit
system and can be used to test various quantum infor-
mation properties. We calculate the quantities intro-
duced in the previous section for the two-qubit system
in H ! ⌧+⌧�.

A general interaction between a Higgs boson and tau
leptons can be written as

L 3 � m⌧

vSM
H ̄⌧ (cos � + i�5 sin �) ⌧ , (15)

where m⌧ and vSM are the tau lepton mass and the Stan-
dard Model (SM) Higgs vacuum expectation value, re-
spectively. The real parameters  2 R+ and � 2 [0, 2⇡]
describes the magnitude of the Yukawa interaction and
the CP phase. In this scheme the Standard Model is
characterised by (, �) = (1, 0).

The spin density matrix for the two taus in H ! ⌧+⌧�

is given by

⇢mn,m̄n̄ =
M⇤nn̄Mmm̄

P
mm̄

|Mmm̄|2
, (16)

where

Mmm̄ = c ūm(p)(cos � + i�5 sin �)v
m̄(p̄) (17)

is the matrix element of H ! ⌧+⌧� and c = �im⌧/vSM.
Here, pµ = (mH

2
, 0, 0, pz) and p̄µ = (mH

2
, 0, 0,�pz) are

the momenta of ⌧� and ⌧+, respectively. The indices
m,n (m̄, n̄) label the ⌧�(+) spin in the direction of the z-
axis (the direction of ⌧� momentum). A straightforward
calculation leads to [13, 14]

⇢mn,m̄n̄ =
1

2

0

BB@

0 0 0 0
0 1 e�i2� 0
0 ei2� 1 0
0 0 0 0

1

CCA (18)

up to the term of order of m2

⌧
/m2

H
. On the

RHS, the column (mn) and row (m̄n̄) are ordered as
(+,+), (+,�), (�,+), (�,�). From this the expansion

coefficients in Eq. (1) can readily be obtained as Bi =
B̄i = 0 and

Cij =

0

@
cos 2� sin 2� 0
� sin 2� cos 2� 0

0 0 �1

1

A . (19)

The signature of entanglement (4) is calculated to be

E(�) = 2| cos 2�|+ 1 . (20)

This is greater than 1 unless � = ⇡

4
, 3⇡

4
, 5⇡

4
and reaches

the maximum (E(�) = 3) at � = 0 (SM), ⇡/2 (CP-odd)
and ⇡ (negative Yukawa coupling).

The concurrence is also calculable. Eq. (18) leads to
⇢̃ = ⇢ and R = ⇢. It also implies ⌘i = (1, 0, 0, 0) and we
therefore have C[⇢] = 1. The ⌧+⌧� pair is maximally
entangled regardless of the CP phase � [15].

For states with vanishing Bloch vectors, Bi = B̄i = 0,
a convenient sufficient and necessary condition for steer-
ability is known [16–18]. The state is steerable iff S[⇢] > 1
with

S[⇢] ⌘ 1

2⇡

Z
d⌦n

p
nTCTCn , (21)

where n is a unit vector to be integrated out. In H !
⌧+⌧� we obtain S[⇢] = 2 (steerable) from Eq. (19). We
use S[⇢] as a measure of steering in the following sections.

The variable Rmax

CHSH
can be calculated immediately

from Eq. (10) as

Rmax

CHSH
=

p
2, (22)

which violates the classical bound and saturates the
quantum mechanical one. Since Rmax

CHSH
is independent

of �, a test of Bell-nonlocality can be done regardless of
the CP property of the H⌧⌧ interaction.

The state in Eq. (18) is pure, i.e. Tr ⇢2 = 1. The
corresponding pure state can be found as [19]

| H!⌧⌧ (�)i =
1p
2

�
|+,�i+ ei2�|�,+i

�
. (23)

In the Standard Model (� = 0), this state is the triplet
state (s,m) = (1, 0), where s and m are the magnitude
and the z-component of the total spin, respectively. This
can be understood as follows. Since the SM Higgs is CP-
even scalar, the final state must have even parity and zero
total angular momentum, JP = 0+, provided the parity
is conserved in the H⌧⌧ interaction. In the final state,
the total parity is given by P = (⌘⌧� ⌘⌧+) · (�1)`, where
⌘⌧�(+) is the intrinsic parity of ⌧�(+) and ` is the orbital
angular momentum. The intrinsic parities of a fermion
and its anti-fermion are opposite, (⌘⌧� ⌘⌧+) = �1, and
the spin state of the final state must be s = 0 or 1. The
only consistent choice to obtain JP = 0+ is ` = 1 and s =
1. The same line of argument leads to a conclusion that
if ⌧+⌧� are produced from the decay of a particle with
JP = 0� (� = ⇡

2
), the final state must have ` = s = 0,

namely, it must be the singlet state 1p
2
(|+,�i� |�,+i).

This observation is consistent with Eq. (23).
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with
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where n is a unit vector to be integrated out. In H !
⌧+⌧� we obtain S[⇢] = 2 (steerable) from Eq. (19). We
use S[⇢] as a measure of steering in the following sections.
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from Eq. (10) as

Rmax
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which violates the classical bound and saturates the
quantum mechanical one. Since Rmax

CHSH
is independent

of �, a test of Bell-nonlocality can be done regardless of
the CP property of the H⌧⌧ interaction.

The state in Eq. (18) is pure, i.e. Tr ⇢2 = 1. The
corresponding pure state can be found as [19]

| H!⌧⌧ (�)i =
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In the Standard Model (� = 0), this state is the triplet
state (s,m) = (1, 0), where s and m are the magnitude
and the z-component of the total spin, respectively. This
can be understood as follows. Since the SM Higgs is CP-
even scalar, the final state must have even parity and zero
total angular momentum, JP = 0+, provided the parity
is conserved in the H⌧⌧ interaction. In the final state,
the total parity is given by P = (⌘⌧� ⌘⌧+) · (�1)`, where
⌘⌧�(+) is the intrinsic parity of ⌧�(+) and ` is the orbital
angular momentum. The intrinsic parities of a fermion
and its anti-fermion are opposite, (⌘⌧� ⌘⌧+) = �1, and
the spin state of the final state must be s = 0 or 1. The
only consistent choice to obtain JP = 0+ is ` = 1 and s =
1. The same line of argument leads to a conclusion that
if ⌧+⌧� are produced from the decay of a particle with
JP = 0� (� = ⇡

2
), the final state must have ` = s = 0,

namely, it must be the singlet state 1p
2
(|+,�i� |�,+i).

This observation is consistent with Eq. (23).
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where ⇢B(�) is Bob’s local state and FB
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is Bob’s positive
operator valued measure (POVM). By definition, all Bell-
nonlocal states are steerable. Also, if states are separable,
the probability of measurement outcomes can be written
in a form of Eqs. (12) and (13). Namely, the following
hierarchy is established:
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system and can be used to test various quantum infor-
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leptons can be written as
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spectively. The real parameters  2 R+ and � 2 [0, 2⇡]
describes the magnitude of the Yukawa interaction and
the CP phase. In this scheme the Standard Model is
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axis (the direction of ⌧� momentum). A straightforward
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entangled regardless of the CP phase � [15].
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state (s,m) = (1, 0), where s and m are the magnitude
and the z-component of the total spin, respectively. This
can be understood as follows. Since the SM Higgs is CP-
even scalar, the final state must have even parity and zero
total angular momentum, JP = 0+, provided the parity
is conserved in the H⌧⌧ interaction. In the final state,
the total parity is given by P = (⌘⌧� ⌘⌧+) · (�1)`, where
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angular momentum. The intrinsic parities of a fermion
and its anti-fermion are opposite, (⌘⌧� ⌘⌧+) = �1, and
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1. The same line of argument leads to a conclusion that
if ⌧+⌧� are produced from the decay of a particle with
JP = 0� (� = ⇡

2
), the final state must have ` = s = 0,

namely, it must be the singlet state 1p
2
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This observation is consistent with Eq. (23).
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⌘⌧�(+) is the intrinsic parity of ⌧�(+) and ` is the orbital
angular momentum. The intrinsic parities of a fermion
and its anti-fermion are opposite, (⌘⌧� ⌘⌧+) = �1, and
the spin state of the final state must be s = 0 or 1. The
only consistent choice to obtain JP = 0+ is ` = 1 and s =
1. The same line of argument leads to a conclusion that
if ⌧+⌧� are produced from the decay of a particle with
JP = 0� (� = ⇡
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), the final state must have ` = s = 0,

namely, it must be the singlet state 1p
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In the Standard Model (� = 0), this state is the triplet
state (s,m) = (1, 0), where s and m are the magnitude
and the z-component of the total spin, respectively. This
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even scalar, the final state must have even parity and zero
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the total parity is given by P = (⌘⌧� ⌘⌧+) · (�1)`, where
⌘⌧�(+) is the intrinsic parity of ⌧�(+) and ` is the orbital
angular momentum. The intrinsic parities of a fermion
and its anti-fermion are opposite, (⌘⌧� ⌘⌧+) = �1, and
the spin state of the final state must be s = 0 or 1. The
only consistent choice to obtain JP = 0+ is ` = 1 and s =
1. The same line of argument leads to a conclusion that
if ⌧+⌧� are produced from the decay of a particle with
JP = 0� (� = ⇡
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), the final state must have ` = s = 0,

namely, it must be the singlet state 1p
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nonlocal states are steerable. Also, if states are separable,
the probability of measurement outcomes can be written
in a form of Eqs. (12) and (13). Namely, the following
hierarchy is established:
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In H ! ⌧+⌧�, the spins of two taus form a two-qubit
system and can be used to test various quantum infor-
mation properties. We calculate the quantities intro-
duced in the previous section for the two-qubit system
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A general interaction between a Higgs boson and tau
leptons can be written as
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vSM
H ̄⌧ (cos � + i�5 sin �) ⌧ , (15)

where m⌧ and vSM are the tau lepton mass and the Stan-
dard Model (SM) Higgs vacuum expectation value, re-
spectively. The real parameters  2 R+ and � 2 [0, 2⇡]
describes the magnitude of the Yukawa interaction and
the CP phase. In this scheme the Standard Model is
characterised by (, �) = (1, 0).

The spin density matrix for the two taus in H ! ⌧+⌧�

is given by
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, 0, 0, pz) and p̄µ = (mH

2
, 0, 0,�pz) are

the momenta of ⌧� and ⌧+, respectively. The indices
m,n (m̄, n̄) label the ⌧�(+) spin in the direction of the z-
axis (the direction of ⌧� momentum). A straightforward
calculation leads to [13, 14]
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up to the term of order of m2

⌧
/m2

H
. On the

RHS, the column (mn) and row (m̄n̄) are ordered as
(+,+), (+,�), (�,+), (�,�). From this the expansion

coefficients in Eq. (1) can readily be obtained as Bi =
B̄i = 0 and
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The signature of entanglement (4) is calculated to be

E(�) = 2| cos 2�|+ 1 . (20)

This is greater than 1 unless � = ⇡

4
, 3⇡

4
, 5⇡

4
and reaches

the maximum (E(�) = 3) at � = 0 (SM), ⇡/2 (CP-odd)
and ⇡ (negative Yukawa coupling).

The concurrence is also calculable. Eq. (18) leads to
⇢̃ = ⇢ and R = ⇢. It also implies ⌘i = (1, 0, 0, 0) and we
therefore have C[⇢] = 1. The ⌧+⌧� pair is maximally
entangled regardless of the CP phase � [15].

For states with vanishing Bloch vectors, Bi = B̄i = 0,
a convenient sufficient and necessary condition for steer-
ability is known [16–18]. The state is steerable iff S[⇢] > 1
with

S[⇢] ⌘ 1

2⇡

Z
d⌦n

p
nTCTCn , (21)

where n is a unit vector to be integrated out. In H !
⌧+⌧� we obtain S[⇢] = 2 (steerable) from Eq. (19). We
use S[⇢] as a measure of steering in the following sections.

The variable Rmax

CHSH
can be calculated immediately

from Eq. (10) as

Rmax

CHSH
=

p
2, (22)

which violates the classical bound and saturates the
quantum mechanical one. Since Rmax

CHSH
is independent

of �, a test of Bell-nonlocality can be done regardless of
the CP property of the H⌧⌧ interaction.

The state in Eq. (18) is pure, i.e. Tr ⇢2 = 1. The
corresponding pure state can be found as [19]

| H!⌧⌧ (�)i =
1p
2

�
|+,�i+ ei2�|�,+i

�
. (23)

In the Standard Model (� = 0), this state is the triplet
state (s,m) = (1, 0), where s and m are the magnitude
and the z-component of the total spin, respectively. This
can be understood as follows. Since the SM Higgs is CP-
even scalar, the final state must have even parity and zero
total angular momentum, JP = 0+, provided the parity
is conserved in the H⌧⌧ interaction. In the final state,
the total parity is given by P = (⌘⌧� ⌘⌧+) · (�1)`, where
⌘⌧�(+) is the intrinsic parity of ⌧�(+) and ` is the orbital
angular momentum. The intrinsic parities of a fermion
and its anti-fermion are opposite, (⌘⌧� ⌘⌧+) = �1, and
the spin state of the final state must be s = 0 or 1. The
only consistent choice to obtain JP = 0+ is ` = 1 and s =
1. The same line of argument leads to a conclusion that
if ⌧+⌧� are produced from the decay of a particle with
JP = 0� (� = ⇡

2
), the final state must have ` = s = 0,

namely, it must be the singlet state 1p
2
(|+,�i� |�,+i).

This observation is consistent with Eq. (23).
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1. The same line of argument leads to a conclusion that
if ⌧+⌧� are produced from the decay of a particle with
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2
), the final state must have ` = s = 0,

namely, it must be the singlet state 1p
2
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This observation is consistent with Eq. (23).

ei2δ
e−i2δ

Bi = Bi = 0

Cij =
cos 2δ sin 2δ 0

−sin 2δ cos 2δ 0
0 0 −1

|ΨH→ττ(δ)⟩ ∝ | + − ⟩ + ei2δ | − + ⟩

|Ψ(1,m)⟩ ∝
| + + ⟩

| + − ⟩ + | − + ⟩
| − − ⟩

|Ψ(0,0)⟩ ∝ | + − ⟩ − | − + ⟩

δ = π /2 (CP odd)
δ = 0

(CP even)

Parity:    with :  P = (ηf ηf̄ ) ⋅ (−1)l ηf ηf̄ = − 1

 JP = {0+ ⟹ l = s = 1
0− ⟹ l = s = 0

H → τ+τ−



• If the state is separable (not entangled), 
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⇢ =
X

k

pk⇢
↵
k ⌦ ⇢�k

5.2 Case for general quantum sates

5.2.1 The density operator

Let’s consider a situation where we have a quantum state | ki with probability pk. In this case, we
can describe the system with the density operator defined by

⇢̂ ⌘
X

k

pk| kih k| (5.19)

with
0  pk  1,

X

k

pk = 1 , (5.20)

since pk is probability. Using an orthonormal basis, {|e↵i}, with he↵|e�i = �↵� and
P

↵
|e↵ihe↵| = 1,

one can give a matrix representation (density matrix)

⇢↵� ⌘ he↵|⇢̂|e�i . (5.21)

The density operator (matrix) satisfies the following properties:

• ⇢̂
† = ⇢̂

• Tr ⇢̂ = 1

• ⇢̂ is positive definite, that is 8|'i; h'|⇢̂|'i � 0.

The second property holds since

Tr ⇢̂ ⌘
X

i

he↵|⇢̂|e↵i =
X

↵,k

pkh k|e↵ihe↵| ki =
X

k

pk = 1 . (5.22)

Conversely, if one finds an operator satisfying the above three properties, there exists a corresponding
quantum state associated with it. Using the density operator, the expectation value of an observable,
Â, can be calculated as

hÂi = Tr
h
Â⇢̂

i
(5.23)

since the RHS is
X

↵,k

pkhe↵|Â| kih k|e↵i =
X

↵,k

pkh k|e↵ihe↵|Â| ki =
X

k

pkh k|Â| ki . (5.24)

As an example, let’s consider the EPR singlet state (s, sz) = (0, 0), | (0,0)

EPR
i .
= |"zi|#zi�|#zi|"zip

2
. By taking

the orthogonal basis as

(|e1i, |e2i, |e3i, |e4i) = (| "z"zi, | "z#zi, | #z"zi, | #z#zi) (5.25)

we have

⇢̂
EPR,(0,0) =

1

2
(|e2i � |e3i) (he2| � he3|)

=
1

2
(|e2ihe2| + |e3ihe3|) � 1

2
(|e2ihe3| + |e3ihe2|) (5.26)

and

⇢
EPR,(0,0)

↵�
= he↵|⇢̂EPR,(0,0)|e�i =

0
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⇢T� ⌘
X

k

pk⇢
↵
k ⌦ [⇢�k ]

T

then, a modified matrix by the partial transpose  

is also a physical density matrix,  i.e. Tr=1 and non-negative.  

Peres-Horodecki 
(1996, 1997)

• For biparticle systems, entanglement     to be non-positive.⟺ ρTβ

• A simple sufficient condition for entanglement is:

E ≡ C11 + C22 − C33 > 1

Entanglement

(E = 2 cos 2δ + 1 for H → τ+τ−)
(E = 3 (maximally entangled) for H → τ+τ− in SM)



• In , the direction of , ( ), measured at the rest frame of  is  τ± → π±ν π± ⃗π± τ±

dΓ
dΩ

∝ 1 + ατ→πν ⋅ ( ⃗π± ⋅ s)
-  is a unit vector pointing to the direction 

of  measured at the rest frame of 
⃗π±

π± τ±

-  is the spin of  at its rest frames τ±

spin analyzing power [-1, 1]



dΓ
dΩ

∝ 1 + ατ→πν ⋅ ( ⃗π± ⋅ s)
-  is a unit vector pointing to the direction 

of  measured at the rest frame of 
⃗π±

π± τ±

-  is the spin of  at its rest frames τ±

measurable at colliders, but needs 
to reconstruct the  rest framesτ±

ατ→πν = 1

spin analyzing power [-1, 1]

spin analyzing power for  
has the maximal value 1.

τ → πν

⟨ ̂s(τ−)
i ̂s(τ+)

j ⟩ = Cij = −
9

α2
τ→πν

⋅ ⟨( ⃗π− ⋅ ei)( ⃗π+ ⋅ ej)⟩

• In , the direction of , ( ), measured at the rest frame of  is  τ± → π±ν π± ⃗π± τ±



=
9
2 ⟨( ⃗π− ⋅ â)( ⃗π+ ⋅ b̂)⟩ − ⟨( ⃗π− ⋅ â)( ⃗π+ ⋅ b̂′ )⟩ + ⟨( ⃗π− ⋅ â′ )( ⃗π+ ⋅ b̂)⟩ + ⟨( ⃗π− ⋅ â′ )( ⃗π+ ⋅ b̂′ )⟩

RCHSH ≡
1
2

⟨sasb⟩ − ⟨sasb′ ⟩ + ⟨sa′ sb⟩ + ⟨sa′ sb′ ⟩

⟨ ̂s(τ−)
i ̂s(τ+)

j ⟩ = − 9 ⋅ ⟨( ⃗π− ⋅ ei)( ⃗π+ ⋅ ej)⟩

• For the unit vectors , RHS of the Bell inequality can be measured as(â, â′ , b̂, b̂′ )
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⟨ ̂s(τ−)
i ̂s(τ+)

j ⟩ = − 9 ⋅ ⟨( ⃗π− ⋅ ei)( ⃗π+ ⋅ ej)⟩

• For the unit vectors , RHS of the Bell inequality can be measured as(â, â′ , b̂, b̂′ )

4

<latexit sha1_base64="TA13lJl/a/SPWJTIyHnbvbknB1Y=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4sSQi6rHoxWMF+wFtLJvtpl27yYbdiVBC/4MXD4p49f9489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ2l5ZXVtvbBR3Nza3tkt7e03jEo143WmpNKtgBouRczrKFDyVqI5jQLJm8HwZuI3n7g2QsX3OEq4H9F+LELBKFqp0UGaPpx2S2W34k5BFomXkzLkqHVLX52eYmnEY2SSGtP23AT9jGoUTPJxsZManlA2pH3etjSmETd+Nr12TI6t0iOh0rZiJFP190RGI2NGUWA7I4oDM+9NxP+8dorhlZ+JOEmRx2y2KEwlQUUmr5Oe0JyhHFlCmRb2VsIGVFOGNqCiDcGbf3mRNM4q3kXFuzsvV6/zOApwCEdwAh5cQhVuoQZ1YPAIz/AKb45yXpx352PWuuTkMwfwB87nD0Ngju0=</latexit>

⌧�

<latexit sha1_base64="wjVDF9D1EPvenBbZDe6aOVWMIzE=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSIIQklE1GPRi8cK9gPaWDbbTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfztLyyuraemGjuLm1vbNb2ttvGJVqxutMSaVbATVcipjXUaDkrURzGgWSN4PhzcRvPnFthIrvcZRwP6L9WISCUbRSo4M0fTjtlspuxZ2CLBIvJ2XIUeuWvjo9xdKIx8gkNabtuQn6GdUomOTjYic1PKFsSPu8bWlMI278bHrtmBxbpUdCpW3FSKbq74mMRsaMosB2RhQHZt6biP957RTDKz8TcZIij9lsUZhKgopMXic9oTlDObKEMi3srYQNqKYMbUBFG4I3//IiaZxVvIuKd3derl7ncRTgEI7gBDy4hCrcQg3qwOARnuEV3hzlvDjvzsesdcnJZw7gD5zPH0BYjus=</latexit>

⌧+

<latexit sha1_base64="upROYjhOB8oqazUx1O1kc1l8A/g=">AAAB7XicbZA9SwNBEIbn4lc8v6KWNotBsAp3FmojBm0sI5gPSI6wt9lL1uztHbtzQgj5DzYWithY+FPsbcR/4yax0MQXFh7ed4admTCVwqDnfTm5hcWl5ZX8qru2vrG5VdjeqZkk04xXWSIT3Qip4VIoXkWBkjdSzWkcSl4P+5fjvH7HtRGJusFByoOYdpWIBKNorVoLexxpu1D0St5EZB78Hyiev7tn6eunW2kXPlqdhGUxV8gkNabpeykGQ6pRMMlHbiszPKWsT7u8aVHRmJtgOJl2RA6s0yFRou1TSCbu744hjY0ZxKGtjCn2zGw2Nv/LmhlGp8FQqDRDrtj0oyiTBBMyXp10hOYM5cACZVrYWQnrUU0Z2gO59gj+7MrzUDsq+ccl/9orli9gqjzswT4cgg8nUIYrqEAVGNzCPTzCk5M4D86z8zItzTk/PbvwR87bNwWFkms=</latexit>

✓

<latexit sha1_base64="3PBzf+PpVdsEfh6ciIYigGPD7A4=">AAAB7nicdVDLSgMxFM3UVx1fVZdugkVwNWRaptaFWHTjsoJ9QFtKJs20oZnMkGSEMvQj3LhQxIUb/8S9G/FvzLQKKnrgwuGce7nnXj/mTGmE3q3cwuLS8kp+1V5b39jcKmzvNFWUSEIbJOKRbPtYUc4EbWimOW3HkuLQ57Tlj88zv3VNpWKRuNKTmPZCPBQsYARrI7XSrh9AOe0XishBFa987EHkeMitljJS8lyEytB10AzF0xf7JH56s+v9wmt3EJEkpEITjpXquCjWvRRLzQinU7ubKBpjMsZD2jFU4JCqXjqLO4UHRhnAIJKmhIYz9ftEikOlJqFvOkOsR+q3l4l/eZ1EB9VeykScaCrIfFGQcKgjmN0OB0xSovnEEEwkM1khGWGJiTYfss0Tvi6F/5NmyXErjnuJirUzMEce7IF9cAhccARq4ALUQQMQMAY34A7cW7F1az1Yj/PWnPU5swt+wHr+AN7Jku0=</latexit>r

<latexit sha1_base64="nyg99AufCuVdvpJ3NRjIkWWJcvw=">AAAB7nicdZDLSgMxFIYzXut4q7p0EyyCq5LporYLsejGZQV7gXYomTTThslkQpIRytCHcONCERdufBP3bsS3MdMqqOgPgY//P4eccwLJmTYIvTsLi0vLK6uFNXd9Y3Nru7iz29ZJqghtkYQnqhtgTTkTtGWY4bQrFcVxwGkniM7zvHNNlWaJuDITSf0YjwQLGcHGWp2sH4Qwmg6KJVRGVtUqzMGrIc9CvV6rVOrQm0UIlU5f3BP59OY2B8XX/jAhaUyFIRxr3fOQNH6GlWGE06nbTzWVmER4RHsWBY6p9rPZuFN4aJ0hDBNlnzBw5n7vyHCs9SQObGWMzVj/znLzr6yXmrDmZ0zI1FBB5h+FKYcmgfnucMgUJYZPLGCimJ0VkjFWmBh7Idce4WtT+D+0K2WvWvYuUalxBuYqgH1wAI6AB45BA1yAJmgBAiJwA+7AvSOdW+fBeZyXLjifPXvgh5znD9QNkuc=</latexit>

k
<latexit sha1_base64="/NAh32znnZB8o8C1rG4ftfGEqrQ=">AAAB7nicdZDNSgMxFIUz9a+Of1WXboJFcFUyU23rQiy6cVnBtkI7lEyaaUMzmSHJCGXoQ7hxoYgLN76Jezfi25hpFVT0QODwnXvJvdePOVMaoXcrNze/sLiUX7ZXVtfWNwqbWy0VJZLQJol4JK98rChngjY105xexZLi0Oe07Y/Osrx9TaVikbjU45h6IR4IFjCCtUHttOsHUEx6hSIqHdUq7qELUQmhqluuZMatHrhl6BiSqXjyYh/HT292o1d47fYjkoRUaMKxUh0HxdpLsdSMcDqxu4miMSYjPKAdYwUOqfLS6bgTuGdIHwaRNE9oOKXfO1IcKjUOfVMZYj1Uv7MM/pV1Eh3UvJSJONFUkNlHQcKhjmC2O+wzSYnmY2MwkczMCskQS0y0uZBtjvC1KfzftNySUyk5F6hYPwUz5cEO2AX7wAFVUAfnoAGagIARuAF34N6KrVvrwXqcleasz55t8EPW8wfkQJLx</latexit>n

<latexit sha1_base64="wOg8wzxFjZP0ZGqnY5aGYJLzEXo=">AAAB7nicdZDLSgMxFIYzXut4q7p0EyyCqzJTW+0sxKIblxXsBdqhZNJMG5rJhCQjlKEP4caFIi7c+Cbu3YhvY6ZVUNEfAj/ffw455wSCUaUd592am19YXFrOrdira+sbm/mt7aaKE4lJA8cslu0AKcIoJw1NNSNtIQmKAkZaweg8y1vXRCoa8ys9FsSP0IDTkGKkDWql3SCEw0kvX3CKXrVSKZegU3Qcr1w5NMbzPLfqQteQTIXTF/tEPL3Z9V7+tduPcRIRrjFDSnVcR2g/RVJTzMjE7iaKCIRHaEA6xnIUEeWn03EncN+QPgxjaR7XcEq/d6QoUmocBaYyQnqofmcZ/CvrJDqs+inlItGE49lHYcKgjmG2O+xTSbBmY2MQltTMCvEQSYS1uZBtjvC1KfzfNEtF96joXjqF2hmYKQd2wR44AC44BjVwAeqgATAYgRtwB+4tYd1aD9bjrHTO+uzZAT9kPX8A++2TAg==</latexit>

h

Figure 1: Helicity basis.

is conserved in the H⌧⌧ interaction. In the final state,
the total parity is given by P = (⌘⌧� ⌘⌧+) · (�1)`, where
⌘⌧�(+) is the intrinsic parity of ⌧�(+) and ` is the orbital
angular momentum. The intrinsic parities of a fermion
and its anti-fermion are opposite, (⌘⌧� ⌘⌧+) = �1, and
the spin state of the final state must be s = 0 or 1. The
only consistent choice to obtain JP = 0+ is ` = 1 and s =
1. The same line of argument leads to a conclusion that
if ⌧+⌧� are produced from the decay of a particle with
JP = 0� (� = ⇡

2
), the final state must have ` = s = 0,

namely, it must be the singlet state 1p
2
(|+,�i� |�,+i).

This observation is consistent with Eq. (23).

IV. MEASUREMENT STRATEGY

The spin of taus is not directly measureable at col-
liders. What can be measured instead is the direction
of a decay product with respect to the motion of the
tau. In order to sensibly compare the directions of decay
products among different events, we adopt a coordinate
system so-called the helicity basis [21]. The three nor-
malised basis vectors (r, n, k) are defined at the centre
of mass frame of ⌧+⌧� in the following way: k is the
direction of ⌧�, r is on the plane spanned by k and h,
which is the motion of the Higgs in the ⌧+⌧� rest frame,
and defined as r ⌘ (h� k cos ✓)/ sin ✓ with cos ✓ ⌘ k · h,
and n ⌘ k⇥ r (see Fig. 1).

Suppose that at the rest frame of ⌧� the tau spin is
polarised into s direction (|s| = 1). The ⌧� decays into
a decay mode, f , producing a detectable particle d. The
conditional probability that the particle d takes the di-
rection u (|u| = 1) when the ⌧� spin is polarised in s
direction is given by [22]

P (u|s) = 1 + ↵f,d s · u , (24)

with the normalisation
R

d⌦

4⇡
P (u|s) = 1, where ↵f,d 2

[�1, 1] is called the spin analyzing power. For the CP
counterpart, (f, d)

CP ! (f̄ , d̄), ↵
f̄ ,d̄

= �↵f,d.
We denote the ⌧+ polarization by s̄ (|̄s| = 1). The

direction of its decay product, d0, measured at the rest
frame of the ⌧+, is represented by a unit vector ū. We
want to relate the spin correlation hs⌦s̄i with the angular

correlation hu⌦ ūi since the latter is measureable. Using
the probability distribution (24), it is not hard to show
(see Appendix A)

huaūbi =
↵f,d↵f 0,d0

9
hsas̄bi , (25)

where ua ⌘ u ·a, s̄b ⌘ s̄ ·b, etc. are the components with
respect to arbitrary unit vectors a and b. Using this
relation, we can obtain RCHSH in terms of the angular
correlations:

RCHSH =
9

2|↵f,d↵f 0,d0 | ⇥

|huaūbi � huaūb0i+ hua0 ūbi+ hua0 ūb0i| . (26)

In H ! ⌧⌧ , a set of four unit vectors that maximises
RCHSH can be chosen as (see Eqs. (11) and (19))

a⇤ = k, a0
⇤ = r,

b⇤ =
1p
2
(r + k) , b0

⇤ =
1p
2
(r� k) . (27)

We use the above unit vectors and consider a direct mea-
surement of R⇤

CHSH
⌘ RCHSH(a⇤,a0

⇤,b⇤,b0
⇤) to test the

Bell-nonlocality in section VI.
From Eq. (24), one can also show [23]

1

�

d�

d(uaūb)
=

1 + ↵f,d↵f 0,d0Cab uaūb

2
ln

✓
1

uaūb

◆
. (28)

This allows us to measure the Cab component by fitting
the d�

d(uaūb)
distribution with the function on the RHS

[24]. More conveniently, the components of the C matrix
can be measured from the forward-backward asymmetry
[4]

Cab =
4

�↵f,d↵f 0,d0

N(uaūb > 0)�N(uaūb < 0)

N(uaūb > 0) + N(uaūb < 0)
. (29)

For the steering measurement, we calculate S[⇢] by di-
rectly performing the integral in Eq. (21) with the mea-
sured C matrix.

In the Standard Model (� = 0), the C matrix in the
helicity basis is given by

Crr = Cnn = 1, Ckk = �1, Cij = 0 (i 6= j) (30)

and the entanglement signature becomes

E = Ek ⌘ Crr + Cnn � Ckk . (31)

There is a way to measure this combination directly [4].
We introduce a metric ⌘k = diag(1, 1,�1) and define
cos ✓k ⌘ uT ⌘kū = urūr + unūn � ukūk. This quantity
distributes as

1

�

d�

d cos ✓k
=

1

2

�
1� ↵f,d↵f 0,d0Ek cos ✓k

�
(32)

and Ek can be measured as a forward-backward asym-
metry

Ek =
6

�↵f,d↵f 0,d0

N(cos ✓k > 0)�N(cos ✓k < 0)

N(cos ✓k > 0) + N(cos ✓k < 0)
. (33)

boost of  

at  rest frame

H
H

• We fix  so that RCHSH is maximised. (â, â′ , b̂, b̂′ )

â = r b̂ =
1

2
(n + r)

â′ = n b̂′ =
1

2
(n − r)

â

â′ 

b̂

b̂′ helicity basis

 ( ̂r, n̂, k̂)



Separable state (compliment of entangled state):

P(a | ̂A, ̂ρ) = ⟨a |ρ |a⟩ Probability for outcome  when  is measured on the state a ̂A ̂ρ

̂A |a⟩ = a |a⟩

ρ = ∑
λ

pλ ρα
k ⊗ ρβ

λP(a, b |A, B) = ∑
λ

pλ ⟨a |ρα
λ |a⟩ ⋅ ⟨b |ρβ

λ |b⟩



Separable state (compliment of entangled state):

Hidden Variable state (complement of Bell nonlocal state):

arbitrary conditional 
probabilities

ρ = ∑
λ

pλ ρα
k ⊗ ρβ

λP(a, b |A, B) = ∑
λ

pλ ⟨a |ρα
λ |a⟩ ⋅ ⟨b |ρβ

λ |b⟩

P(a, b |A, B) = ∑
λ

pλ Pα(a |A, λ) ⋅ Pβ(b |B, λ)

separableHidden 
Variable

all states



Separable state (compliment of entangled state):

Hidden Variable state (complement of Bell nonlocal state):

Un-steerable state (not-steerable by Alice):

separableUn-
steerable

Hidden 
Variable

all states

If this description is possible, 
Alice cannot influence 
(``steer’’) Bob’s local state

[Jones, Wiseman, Doherty 2007]

P(a, b |A, B) = ∑
λ

pλ Pα(a |A, λ) ⋅ Pβ(b |B, λ)

ρ = ∑
λ

pλ ρα
k ⊗ ρβ

λP(a, b |A, B) = ∑
λ

pλ ⟨a |ρα
λ |a⟩ ⋅ ⟨b |ρβ

λ |b⟩

P(a, b |A, B) = ∑
λ

pλ Pα(a |A, λ) ⋅ ⟨b |ρβ
λ |b⟩

arbitrary conditional 
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Separable state (compliment of entangled state):
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Un-steerable state (not-steerable by Alice):
If this description is possible, 
Alice cannot influence 
(``steer’’) Bob’s local state

[Jones, Wiseman, Doherty 2007]

RCHSH > 1

P(a, b |A, B) = ∑
λ

pλ Pα(a |A, λ) ⋅ Pβ(b |B, λ)

ρ = ∑
λ

pλ ρα
k ⊗ ρβ

λP(a, b |A, B) = ∑
λ

pλ ⟨a |ρα
λ |a⟩ ⋅ ⟨b |ρβ

λ |b⟩

P(a, b |A, B) = ∑
λ

pλ Pα(a |A, λ) ⋅ ⟨b |ρβ
λ |b⟩



Steerability
• For unpolarised cases, , a necessary and sufficient condition for 

steerability is given by:
⟨ ̂sA

i ⟩ = ⟨ ̂sB
i ⟩ = 0

[Jevtic, Hall, Anderson, Zwierz, Wiseman 2015]

𝒮[ρ] ≡
1

2π ∫ dΩn nTCTCn 𝒮[ρ] > 1

• In ,H → τ+τ−

𝒮[ρ] = 2 ( independent of  )δCij =
cos 2δ sin 2δ 0

−sin 2δ cos 2δ 0
0 0 −1

CTC = 1



E > 1

Entanglement:

E(H → τ+τ−) = 2 cos 2δ + 1

E ≡ C11 + C22 − C33

[Peres-Horodecki 1996-7]

Steerability: [Jevtic, Hall, Anderson, Zwierz, Wiseman 2015]

(assuming )Bi = Bi = 0𝒮[ρ] > 1

𝒮[ρ](H → τ+τ−) = 2

𝒮[ρ] ≡
1

2π ∫ dΩn nT CTC n

Bell-nonlocality: [Clauser, Horne, Shimony, Holt, 1969]

RCHSH(H → τ+τ−) = 2

RCHSH ≡
1
2

⟨sasb⟩ − ⟨sasb′ ⟩ + ⟨sa′ sb⟩ + ⟨sa′ sb′ ⟩ > 1

⟨sisj⟩ = Cij = − 9 ⋅ ⟨( ⃗π− ⋅ ei)( ⃗π+ ⋅ ej)⟩



Chapter 2. Higgs Boson

Figure 2.8

Higgs recoil mass distri-
bution in the Higgs-
strahlung process
e+e≠ æ Zh, with
(a) Z æ µ+µ≠ and
(b) Z æ e+e≠(n“).
The results are shown
for P (e+, e≠) =
(+30%, ≠80%) beam
polarization.
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of 32 MeV is obtained [74, 75]. The corresponding model independent uncertainty on the Higgs
production cross section is 2.5%. Similar results were obtained from SiD [76]. It should be emphasized
that these measurements only used the information from the leptonic decay products of the Z and
are independent of the Higgs decay mode. As such this analysis technique could be applied even if
the Higgs decayed invisibly and hence allows us to determine the absolute branching ratios including
that of invisible Higgs decays. By combining the branching ratio to ZZ with the production cross
section, which involves the same ghZZ coupling, one can determine the total width and the absolute
scale of partial widths with no need for the theoretical assumptions needed for the LHC case. We will
return to this point later.

It is worth noting that, for the µ+µ≠X channel, the width of the recoil mass peak is dominated
by the beam energy spread. In the above study Gaussian beam energy spreads of 0.28 % and 0.18 %
are assumed for the incoming electron and positron beams respectively. For ILD the detector response
leads to the broadening of the recoil mass peak from 560 MeV to 650 MeV. The contribution from
momentum resolution is therefore estimated to be 330 MeV. Although the e�ect of the detector
resolution is not negligible, the dominant contribution to the observed width arises from the incoming
beam energy spread rather than the detector response. This is no coincidence; the measurement
of mh from the µ+µ≠X recoil mass distribution was one of the benchmarks used to determine the
momentum resolution requirement for a detector at the ILC.

If there are additional Higgs fields with vacuum expectation values that contribute to the mass of
the Z, the corresponding Higgs particles will also appear in reactions e+e≠

æ ZhÕ, and their masses
can be determined in the same way.

We now turn to the determination of the spin and CP properties of the Higgs boson. The h æ ““

decay observed at the LHC rules out the possibility of spin 1 and restricts the charge conjugation C
to be positive. We have already noted that the discrete choice between the CP even and CP odd
charge assignments can be settled by the study of Higgs decay to ZZú to 4 leptons at the LHC.

The ILC o�ers an additional, orthogonal, test of these assignments. The threshold behavior
of the Zh cross section has a characteristic shape for each spin and each possible CP parity. For
spin 0, the cross section rises as — near the threshold for a CP even state and as —3 for a CP odd
state. For spin 2, for the canonical form of the coupling to the energy-momentum tensor, the rise
is also —3. If the spin is higher than 2, the cross section will grow as a higher power of —. With a
three-20 fb≠1-point threshold scan of the e+e≠

æ Zh production cross section we can separate these
possibilities as shown in Fig. 2.9 (left) [77]. The discrimination of more general forms of the coupling
is possible by the use of angular correlations in the boson decay; this is discussed in detail in [78].

At energies well above the Zh threshold, the Zh process will be dominated by longitudinal
Z production as implied by the equivalence theorem. The reaction will then behave like a scalar
pair production, showing the characteristic ≥ sin

2 ◊ dependence if the h particle’s spin is zero. The
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 @ lepton collidersH → τ+τ−

LHC ILC

• Background  is much smaller for lepton colliders.


• We need to reconstruct each  rest frame to measure .  This is challenging 
at hadron colliders since partonic CoM energy is unknown for each event.

Z/γ → τ+τ−

τ ⃗π±



- Generate the SM events  with MadGraph5.(κ, δ) = (1,0)

Simulation

- incorporate the detector effect by smearing energies of visible particles with 

5

for signal/background separation is the invariant mass
of the visible decay products of two taus, mvis(⌧+⌧�).
However, due to presence of neutrinos in tau decays, the
mvis(⌧+⌧�) distributions have long tails and the signal
and background distributions therefore overlap. A usual
practice to overcome this problem is to try to reconstruct
the tau momenta by making some assumption on the neu-
trino momenta, either based on kinematics (e.g. collinear
approximation) or the knowledge of the Standard Model
(e.g. likelihood approach). However, this is not an option
here, since our aim is to measure the angular distribution
and making such assumptions defeats our purpose.

At e+e� colliders, the main production channel near
the threshold,

p
s ⇠ (mH + mZ), is e+e� ! ZH fol-

lowed by Z ! qq̄/`+`� and H ! ⌧+⌧�. The main
background is e+e� ! Z⌧+⌧�, where the pair of taus
comes from an off-shell photon. Unlike hadron colliders,
the full 4-momentum, Pµ

in
, of the initial state (e+e� pair)

is precisely known at lepton colliders. From this and the
measured Z-boson momentum, pµ

Z
= (pq/`� + pq̄/`+)

µ,
one can reconstruct the Higgs momentum as

pµ
H

= Pµ

in
� pµ

Z
(35)

in a good accuracy independently from the Higgs de-
cays. The distribution of the recoil mass, mrecoil =p

(Pin � pZ)2, therefore sharply peaks at the Higgs mass
in the signal. By selecting events that fall within an nar-
row window, |mrecoil�mH | < 5 GeV (Is 5 GeV optimal?),
one can achieve background/signal ⇠? with the signal ef-
ficiency ?%.

The second advantage of e+e� colliders over hadron
colliders is the ability of reconstructing two tau mo-
menta by solving kinematical constraints. This is possi-
ble thanks to the fact that the initial state 4-momentum,
Pµ

in
, is known in a good precision. This is important for

the C-matrix measurement and the Bell inequality test
since they are based on the angular distributions of u
and ū, which must be performed at the rest frames of
⌧� and ⌧+, respectively. Since taus are heavily boosted,
a small error on the tau momentum leads to a large er-
ror on the angular distribution when boosted to the tau
rest frame. Precise reconstruction of the tau momenta is
therefore crucial for the C-matrix measurement and Bell
inequality test.

We consider two benchmark collider scenarios labelled
by “ILC” [23] and “FCC-ee” [24]. The relevant parameters
we use in our simulation are listed in the table below:
We notice that the beam energy resolution is significantly
better for FCC-ee, which will have a significant impact on
the Bell inequality test as we will see in the next section.
We assume the e+e� beams are unpolarised for both ILC
and FCC-ee.

VI. EVENT ANALYSIS AND RESULTS

In our analysis, we focus on the tau decay modes:

⌧� ! ⌫⌧⇡
�, ⌧+ ! ⌫̄⌧⇡

+ (36)

ILC FCC-ee
energy (GeV) 250 240

luminosity (ab�1) 3 5
resolution e

+ (%) 0.18 0.83 · 10�4

resolution e
� (%) 0.27 0.83 · 10�4

�(e+e� ! HZ) (fb) 240.1 240.3
# of signal (� · BR · L) 414 691

Table I: Parameters for benchmark lepton colliders
[23, 24].

with Br(⌧� ! ⌫⇡�) = 0.109 [25]. For these decay modes,
the spin analyzing power is maximum, ↵f,d↵f̄ ,d̄

= �1.
We generate signal events with MadGraph5_aMC@NLO [26]
at leading order with the Standard Model, i.e. (, �) =
(1, 0). The beam energies are smeared according to the
parameters in Table I. We consider only “neutrinoless” Z-
boson decay modes, Z ! xx̄ with xx̄ = qq̄, e+e�, µ+µ�.
ILC and FCC-ee are expected to produce NILC = 414.3
and NFCC = 691.0 signal events, [e+e� ! HZ, Z ! xx̄,
H ! ⌧+⌧�, ⌧± ! ⌫⇡±], respectively. We then further
multiply the efficiency, ✏ILC = 0.99 and ✏FCC = 0.99,
corresponding to the event selection, |mrecoil � mH | <
5 GeV. ? The background is negligible with this cut.
We perform 100 pseudo-experiments for each benchmark
collider and estimate the statistical uncertainties on the
measurements.

In order to take account of the energy mismeasure-
ment, we smear the energies of all visible particles in the
final state as

Etrue ! Eobs = (1 + �E · !) · Etrue (37)

with the energy resolution �E = 0.03 [23], where ! is a
random number drawn from the normal distribution.

A. Solving kinematical constraints

Due to the presence of neutrinos in Eq. (36), the mo-
menta of two taus are not measured. To perform mea-
surements of the C-matrix and R⇤

CHSH
, the momenta of

two neutrinos must be reconstructed by solving kinemat-
ical constraints. For 6 unknown momentum components,
there are two mass-shell constraints: m2

⌧
= (p⌫⌧

+ p⇡�)2

and m2

⌧
= (p⌫̄⌧

+ p⇡+)2, and four conditions from the
energy-momentum conservation: (Pin � pZ)µ = (p⌫⌧

+
p⇡� + p⌫̄⌧

+ p⇡+)µ, and events can be fully reconstructed
up to two-fold solutions: is = 1, 2 (see Appendix B for
details).

The system is first boosted to the rest from of H. For
each solution, is, we then boost the system to the mea-
sured rest frame of ⌧� and calculate the r, n, k compo-
nents of the ⇡� direction, i.e. (uis

r
, uis

n
, uis

k
). The ⇡+ di-

rection, (ūis
r
, ūis

n
, ūis

k
), are obtained at the measured rest

frame of ⌧+ in the same way. For the Bell inequality

random number from the normal distribution

- 100 pseudo-experiments to estimate the statistical uncertainties

e+e− → HZ, Z → f f̄, H → τ+τ−, τ± → νπ±
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At e+e� colliders, the main production channel near
the threshold,

p
s ⇠ (mH+mZ), is e+e� ! ZH followed

by Z ! qq̄/`+`� and H ! ⌧+⌧�. The main background
is e+e� ! Z⌧+⌧�, where the pair of taus comes from
an exchange of �⇤/Z⇤. Unlike hadron colliders, the full
4-momentum, Pµ

in
, of the initial state (e+e� pair) is pre-

cisely known at lepton colliders. From this and the mea-
sured Z-boson momentum, pµ

Z
= (pq/`� + pq̄/`+)

µ, one
can reconstruct the Higgs momentum as

pµ
H

= Pµ

in
� pµ

Z
(36)

in a good accuracy independently from the Higgs de-
cays. The distribution of the recoil mass, mrecoil =p

(Pin � pZ)2, therefore sharply peaks at the Higgs mass
in the signal [49]. By selecting events that fall within an
narrow window, |mrecoil �mH | < 5 GeV, one can achieve
background/signal ⇠ 0.05 with the signal efficiency of
93% and 96% for the ILC and FCC-ee, respectively.

The second advantage of e+e� colliders over hadron
colliders is the ability of reconstructing two tau mo-
menta by solving kinematical constraints. This is possi-
ble thanks to the fact that the initial state 4-momentum,
Pµ

in
, is known in a good precision. This is important for

the C-matrix measurement and the Bell inequality test
since they are based on the angular distributions of u
and ū, which must be performed at the rest frames of
⌧� and ⌧+, respectively. Since taus are heavily boosted,
a small error on the tau momentum leads to a large er-
ror on the angular distribution when boosted to the tau
rest frame. Precise reconstruction of the tau momenta is
therefore crucial for the C-matrix measurement and Bell
inequality test.

We consider two benchmark collider scenarios labelled
by “ILC” [31] and “FCC-ee” [33]. The relevant parameters
we use in our simulation are listed in Table I.

ILC FCC-ee
energy (GeV) 250 240

luminosity (ab�1) 3 5
beam resolution e

+ (%) 0.18 0.83⇥ 10�4

beam resolution e
� (%) 0.27 0.83⇥ 10�4

�(e+e� ! HZ) (fb) 240.1 240.3
# of signal (� · BR · L · ✏) 385 663

# of background (� · BR · L · ✏) 20 36

Table I: Parameters for benchmark lepton colliders
[31, 33]. Only the main background, e+e� ! Z⌧+⌧�, is

considered, where ⌧+⌧� are produced from off-shell
Z/�. The numbers of signal and background reported

here include the decay branching ratios and the
efficiency of the event selection, |mrecoil �mH | < 5 GeV.

We notice that the beam energy resolution is significantly
better for FCC-ee, which will have a significant impact on
the Bell inequality test as we will see in the next section.

We assume the e+e� beams are unpolarised for both ILC
and FCC-ee.

VI. EVENT ANALYSIS AND RESULTS

In our analysis, we focus on the tau decay modes:

⌧� ! ⌫⌧⇡
�, ⌧+ ! ⌫̄⌧⇡

+ (37)

with Br(⌧� ! ⌫⇡�) = 0.109 [50]. For these decay
modes, the spin analyzing power is maximum, ↵f,d↵f̄ ,d̄

=
�1. We generate signal and background events with
MadGraph5_aMC@NLO [51] at leading order in the Stan-
dard Model, i.e. (, �) = (1, 0). We employ the TauDecay
package for ⌧ decays [52]. The beam energies are smeared
according to the parameters in Table I. All “neutrinoless”
Z-boson decay modes, Z ! xx̄ with xx̄ = qq̄, e+e�,
µ+µ�, are included in the analysis. The expected signal
events, [e+e� ! HZ, Z ! xx̄, H ! ⌧+⌧�, ⌧± ! ⌫⇡±],
produced at the ILC and FCC-ee are 414 and 691, re-
spectively. At the ILC and (FCC-ee), after imposing the
requirement, |mrecoil � mH | < 5 GeV, 385 (663) signal
events survive. We estimated that 20 (36) background
events contribute to this phase-space region. We per-
form 100 pseudo-experiments for each benchmark collider
and estimate the statistical uncertainties on the measure-
ments.

To take into account the energy mismeasurement, we
smear the energies of all visible particles in the final state
as

Etrue ! Eobs = (1 + �E · !) · Etrue (38)

with the energy resolution �E = 0.03 [32, 33] for both
ILC and FCC-ee, where ! is a random number drawn
from the normal distribution.

A. Solving kinematical constraints

Due to the presence of neutrinos in Eq. (37), the mo-
menta of two taus are not measured. To perform mea-
surements of the C-matrix and R⇤

CHSH
, the momenta of

two neutrinos must be reconstructed by solving kinemat-
ical constraints. For 6 unknown momentum components,
there are two mass-shell constraints: m2

⌧
= (p⌫⌧

+ p⇡�)2

and m2

⌧
= (p⌫̄⌧

+ p⇡+)2, and four conditions from the
energy-momentum conservation: (Pin � pZ)µ = (p⌫⌧

+
p⇡� +p⌫̄⌧

+p⇡+)µ. By solving those 6 constraints for the
6 unknowns, an event can be fully reconstructed up to
two-fold solutions: is = 1, 2 (see Appendix C for details).

The system is first boosted to the rest frame of H.
For each solution, is, we then boost the system to the
reconstructed rest frame of ⌧� and calculate the r, n, k
components of the ⇡� direction, i.e. (uis

r
, uis

n
, uis

k
). In the

same way, the ⇡+ direction, (ūis
r

, ūis
n

, ūis

k
), are obtained

at the reconstructed rest frame of ⌧+. We estimate the
C-matrix elements with Eq. (30). For the Bell inequality

e+e− → Z + (Z*/γ*) → f f̄ + τ+τ−

- Event selection:
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for signal/background separation is the invariant mass
of the visible decay products of two taus, mvis(⌧+⌧�).
However, due to presence of neutrinos in tau decays, the
mvis(⌧+⌧�) distributions have long tails and the signal
and background distributions therefore overlap. A usual
practice to overcome this problem is to try to reconstruct
the tau momenta by making some assumption on the neu-
trino momenta, either based on kinematics (e.g. collinear
approximation) or the knowledge of the Standard Model
(e.g. likelihood approach). However, this is not an option
here, since our aim is to measure the angular distribution
and making such assumptions defeats our purpose.

At e+e� colliders, the main production channel near
the threshold,

p
s ⇠ (mH + mZ), is e+e� ! ZH fol-

lowed by Z ! qq̄/`+`� and H ! ⌧+⌧�. The main
background is e+e� ! Z⌧+⌧�, where the pair of taus
comes from an off-shell photon. Unlike hadron colliders,
the full 4-momentum, Pµ

in
, of the initial state (e+e� pair)

is precisely known at lepton colliders. From this and the
measured Z-boson momentum, pµ

Z
= (pq/`� + pq̄/`+)

µ,
one can reconstruct the Higgs momentum as

pµ
H

= Pµ

in
� pµ

Z
(35)

in a good accuracy independently from the Higgs de-
cays. The distribution of the recoil mass, mrecoil =p

(Pin � pZ)2, therefore sharply peaks at the Higgs mass
in the signal. By selecting events that fall within an nar-
row window, |mrecoil�mH | < 5 GeV (Is 5 GeV optimal?),
one can achieve background/signal ⇠? with the signal ef-
ficiency ?%.

The second advantage of e+e� colliders over hadron
colliders is the ability of reconstructing two tau mo-
menta by solving kinematical constraints. This is possi-
ble thanks to the fact that the initial state 4-momentum,
Pµ

in
, is known in a good precision. This is important for

the C-matrix measurement and the Bell inequality test
since they are based on the angular distributions of u
and ū, which must be performed at the rest frames of
⌧� and ⌧+, respectively. Since taus are heavily boosted,
a small error on the tau momentum leads to a large er-
ror on the angular distribution when boosted to the tau
rest frame. Precise reconstruction of the tau momenta is
therefore crucial for the C-matrix measurement and Bell
inequality test.

We consider two benchmark collider scenarios labelled
by “ILC” [23] and “FCC-ee” [24]. The relevant parameters
we use in our simulation are listed in the table below:
We notice that the beam energy resolution is significantly
better for FCC-ee, which will have a significant impact on
the Bell inequality test as we will see in the next section.
We assume the e+e� beams are unpolarised for both ILC
and FCC-ee.

VI. EVENT ANALYSIS AND RESULTS

In our analysis, we focus on the tau decay modes:

⌧� ! ⌫⌧⇡
�, ⌧+ ! ⌫̄⌧⇡

+ (36)

ILC FCC-ee
energy (GeV) 250 240

luminosity (ab�1) 3 5
resolution e

+ (%) 0.18 0.83 · 10�4

resolution e
� (%) 0.27 0.83 · 10�4

�(e+e� ! HZ) (fb) 240.1 240.3
# of signal (� · BR · L) 414 691

Table I: Parameters for benchmark lepton colliders
[23, 24].

with Br(⌧� ! ⌫⇡�) = 0.109 [25]. For these decay modes,
the spin analyzing power is maximum, ↵f,d↵f̄ ,d̄

= �1.
We generate signal events with MadGraph5_aMC@NLO [26]
at leading order with the Standard Model, i.e. (, �) =
(1, 0). The beam energies are smeared according to the
parameters in Table I. We consider only “neutrinoless” Z-
boson decay modes, Z ! xx̄ with xx̄ = qq̄, e+e�, µ+µ�.
ILC and FCC-ee are expected to produce NILC = 414.3
and NFCC = 691.0 signal events, [e+e� ! HZ, Z ! xx̄,
H ! ⌧+⌧�, ⌧± ! ⌫⇡±], respectively. We then further
multiply the efficiency, ✏ILC = 0.99 and ✏FCC = 0.99,
corresponding to the event selection, |mrecoil � mH | <
5 GeV. ? The background is negligible with this cut.
We perform 100 pseudo-experiments for each benchmark
collider and estimate the statistical uncertainties on the
measurements.

In order to take account of the energy mismeasure-
ment, we smear the energies of all visible particles in the
final state as

Etrue ! Eobs = (1 + �E · !) · Etrue (37)

with the energy resolution �E = 0.03 [23], where ! is a
random number drawn from the normal distribution.

A. Solving kinematical constraints

Due to the presence of neutrinos in Eq. (36), the mo-
menta of two taus are not measured. To perform mea-
surements of the C-matrix and R⇤

CHSH
, the momenta of

two neutrinos must be reconstructed by solving kinemat-
ical constraints. For 6 unknown momentum components,
there are two mass-shell constraints: m2

⌧
= (p⌫⌧

+ p⇡�)2

and m2

⌧
= (p⌫̄⌧

+ p⇡+)2, and four conditions from the
energy-momentum conservation: (Pin � pZ)µ = (p⌫⌧

+
p⇡� + p⌫̄⌧

+ p⇡+)µ, and events can be fully reconstructed
up to two-fold solutions: is = 1, 2 (see Appendix B for
details).

The system is first boosted to the rest from of H. For
each solution, is, we then boost the system to the mea-
sured rest frame of ⌧� and calculate the r, n, k compo-
nents of the ⇡� direction, i.e. (uis

r
, uis

n
, uis

k
). The ⇡+ di-

rection, (ūis
r
, ūis

n
, ūis

k
), are obtained at the measured rest

frame of ⌧+ in the same way. For the Bell inequality

|Mrecoil − 125 GeV | < 5 GeV Mrecoil ≡ (Pμ
e+e− − Pμ

Z)2



H
τ+

τ−

π+

π−

ν̄
ν

- To determine the tau momenta, we have to 
reconstruct the unobserved neutrino 
momenta . (pν

x , pν
y , pν

z ), (pν̄
x, pν̄

y, pν̄
z)



m2
τ = (pτ+)2 = (pπ+ + pν̄)2

m2
τ = (pτ−)2 = (pπ− + pν)2

(pee − pZ)μ = pμ
H = [(pπ− + pν) + (pπ+ + pν̄)]μ

H
τ+

τ−

π+

π−

ν̄
ν

- To determine the tau momenta, we have to 
reconstruct the unobserved neutrino 
momenta . (pν

x , pν
y , pν

z ), (pν̄
x, pν̄

y, pν̄
z)

- 6 unknowns can be constrained by 2 mass-
shell conditions and 4 energy-momentum 
conservation.

We have 2-fold solutions.
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ILC FCC-ee

Cij

0

@
�0.600± 0.210 0.003± 0.125 0.020± 0.149
0.003± 0.125 �0.494± 0.190 0.007± 0.128
0.048± 0.174 0.0007± 0.156 0.487± 0.193

1

A

0

@
�0.559± 0.143 �0.010± 0.095 �0.014± 0.122
�0.010± 0.095 �0.494± 0.139 �0.002± 0.111
0.012± 0.124 0.020± 0.105 0.434± 0.134

1

A

Ek �1.057± 0.385 �0.977± 0.264
C[⇢] 0.030± 0.071 0.005± 0.023
S[⇢] 1.148± 0.210 1.046± 0.163

R
⇤
CHSH 0.769± 0.189 0.703± 0.134

Table II: Result of quantum property measurements with a simple kinematical reconstruction method.

test, R⇤
CHSH

⌘ RCHSH(a⇤,a0
⇤,b⇤,b0

⇤) is calculated using
Eqs. (26) and (27). Both solutions, is = 1, 2, are included
in the calculation of Cab and R⇤

CHSH
.

The result of the measurements for Cab, Ek, C[⇢], S[⇢]
and R⇤

CHSH
is summarised in Table II. We see that the

C-matrix is measured as a diagonal form with good ac-
curacy. However, the diagonal elements are far off from
the true values, C = diag(1, 1,�1). Not only the magni-
tudes are significantly less than one but also the signs are
flipped for all diagonal components. We also see no clear
indication of the quantum correlations, i.e. entanglement
(Ek > 1, C[⇢] > 0), steerability (S[⇢] > 1) and CHSH
violation (R⇤

CHSH
> 1).

We identify two main reasons for this disappointing re-
sult. The first is the effect of false solutions of the kine-
matic reconstruction. The false solutions contribute to
the measurements as much as the true solutions.3 The
other effect is the smearing of the beam energies and
the energy mismeasurements for the final state particles.
These impact the reconstruction of the tau momenta, in
particular the direction of the tau leptons. In addition,
since the tau leptons are highly boosted, a small error on
their directions results in a large error on the ⇡± distri-
bution measured at the reconstructed ⌧± rest frame.

B. Log-likelihood with the impact parameters

We now discuss how to overcome the limitations iden-
tified in the previous section. We note that the informa-
tion obtained from the impact parameter measurements
of tau decays has not been employed. Since tau leptons
are marginally long-lived, c⌧ = 87.11 µm [50], and highly
boosted, one can observe a mismatch between the inter-
action point and the origin of the ⇡± in ⌧± ! ⌫⇡±.
The impact parameter ~b± is the minimal displacement
of the extrapolated ⇡± trajectory from the interaction

3 We however checked that when smearing is turned off, even if
only false solutions are used for the measurements, the true val-
ues for Cab (and therefore also for R⇤

CHSH
and Ek) are recovered

as in the case where only true solutions are used. When smearing
is switched on, both solutions are different from the MC truth
and we therefore loose the notion of true and false solutions.

point. The magnitude of the impact parameter |~b±| fol-
lows an exponentially falling distribution with the mean
|~b±| ⇠ 100µm for E⌧± ⇠ mH/2, which is significantly
larger than the experimental resolutions, �bT

' 2µm
(transverse) and �bz

' 5µm (longitudinal) [32].
If all quantities are accurately measured, the impact

parameter, ~b±, from the ⌧± ! ⌫⇡± decay, is related to
the directions of ⌧+ and ⇡+ and their angle ⇥± by [53]

~b± = |~b±| ·
⇥
e⌧± · sin�1 ⇥± � e⇡± · tan�1 ⇥±

⇤

⌘ ~breco

± (e⌧±) , (39)

where e⌧± and e⇡± are the unit vectors pointing to the
directions of ⌧± and ⇡±, respectively, and cos⇥± ⌘ (e⌧± ·
e⇡±). In the second line, we defined a 3-vector function
~breco

± (e⌧±) and emphasised its dependence on e⌧± .
We use this information to curb the effects of energy

mismeasurement. First, we shift the energy of a visible
particle ↵ (↵ = ⇡±, x, x̄) from the observed value as

Eobs

↵
! E↵(�↵) = (1 + �E · �↵) · Eobs

↵
, (40)

where �↵ is a nuisance parameter characterising the
amount of the shift with respect to the energy resolution
�E . Using these shifted energies, we solve the kinemat-
ical constraints, as outlined in Appendix C, and obtain
the tau directions as functions of the nuisance parame-
ters, eis

⌧±(���), up to two-fold solutions, is = 1, 2, where
��� = {�+

⇡
, ��

⇡
, �x, �x̄}. Based on the mismatch between the

observed and reconstructed impact parameters,

~�is

b±
(���) ⌘ ~b± �~breco

±
�
eis
⌧+(���)

�
, (41)

we define a contribution to the log-likelihood for a solu-
tion is as

Lis(���) = Lis
+
(���) + Lis

�(���) (42)

with

Lis
±(���) =

[�is

b±
(���)]2

x
+ [�is

b±
(���)]2

y

�2

bT

+
[�is

b±
(���)]2

z

�2

bz

. (43)

The total log-likelihood function is then defined as

L(���) = min
⇥
L1(���), L2(���)

⇤
+ �2

⇡+ + �2

⇡� + �2

x
+ �2

x̄
. (44)

Result 1 2211.10513

CSM
ij = (

1
1

−1)
ESM[ρ] = 3

RSM
CHSH = 2 ≃ 1.414

𝒮SM[ρ] = 2

SM values:

Entanglement ⟹ E > 1

Bell-nonlocal ⟹ RCHSH > 1
Steerablity ⟹ 𝒮[ρ] > 1



We use this information to correct the pion energy mismeasurement.
In reality, we measure the energies of pions and Z decay products only with finite resolutions. Let

us suppose the observed energy of a particle, ↵ = ⇡
+
, ⇡

�
, j1, j2 (j1, j2 are decay products of Z), Eobs

↵
,

is distributed around the truth value, Etruth

↵
, as

E
obs

↵
= (1 + �

E

↵
· !↵) · Etruth

↵
, (8.136)

where the resolution �
E

↵
⇠ 0.03 is a constant and the !+ and !� are random parameters drawn from

the normal distribution. In order to correct the mismeasurement e↵ect, we take the observed energy
and modify it with the analogous formula

E↵(�↵) = (1 + �
E

↵
· �↵) · Eobs

↵
. (8.137)

In this expression the energy of ↵, E↵(�↵), is a function of the nuisance parameter, �↵. We determine
the nuisance parameters by marginalising the log-likelihood function, which we construct based on
Eq. (8.135).

Using the procedure described in the previous subsection, one can reconstruct the tau momenta
with E↵(�↵) (↵ = ⇡

+
, ⇡

�
, j1, j2). We will then be able to express the tau directions ~e⌧± and the angles

⇥± as functions of the nuisance parameters {�} = (�⇡+ , �⇡� , �j1 , �j2) up to two-fold solutions. We
denote them by ~e

i

⌧±({�}) and ⇥i

±({�}) for the solution i (i = 1, 2). From Eq. (8.135), we define
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�
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+
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�
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We define ~�i

b�({�}) analogously with ~b�, ~e i

⌧�({�}) and ⇥i

�({�}). If everything is measured correctly,

(�E = �bT = �bz = 0), these vectors vanish, ~�i
⇤
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⇤.

We construct the log-likelihood function as
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⇤
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2
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2

⇡� + �
2
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+ �

2
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L
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+
({�}) + L

i
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�
2
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({�})]2
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�
2
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where i = 1, 2 labels the two-fold solutions. The log-likelihood function, L({�}), should be minimised
over the nuisance parameters, {�} = (�⇡+ , �⇡� , �j1 , �j2). Once the minimisation is performed, we obtain
the nuisance parameters at the minimum, which we denote by {�⇤}. We define the most likely solution
I, as the solution that gives the smaller Li, i.e.

L
I({�⇤}) = min

⇥
L
1({�⇤}), L2({�⇤})

⇤
. (8.142)

Our best guess for the tau, pion and neutrino momenta are obtained as

p
⇤
⌧± = p

I

⌧±({�⇤}) ,
p
⇤
⇡± = p⇡±(�⇤

⇡±) ,

p
⇤
⌫̄/⌫

= p
⇤
⌧± � p

⇤
⇡± . (8.143)

8.3 Results

Cij =

 �1.008±0.123 0.002±0.103 0.003±0.096

0.024±0.090 0.988±0.106 0.001±0.071

�0.006±0.098 0.004±0.074 0.997±0.108

!
(8.144)
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C[⇢] 0.030± 0.071 0.005± 0.023
S[⇢] 1.148± 0.210 1.046± 0.163

R
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CHSH 0.769± 0.189 0.703± 0.134

Table II: Result of quantum property measurements with a simple kinematical reconstruction method.

test, R⇤
CHSH

⌘ RCHSH(a⇤,a0
⇤,b⇤,b0

⇤) is calculated using
Eqs. (26) and (27). Both solutions, is = 1, 2, are included
in the calculation of Cab and R⇤

CHSH
.

The result of the measurements for Cab, Ek, C[⇢], S[⇢]
and R⇤

CHSH
is summarised in Table II. We see that the

C-matrix is measured as a diagonal form with good ac-
curacy. However, the diagonal elements are far off from
the true values, C = diag(1, 1,�1). Not only the magni-
tudes are significantly less than one but also the signs are
flipped for all diagonal components. We also see no clear
indication of the quantum correlations, i.e. entanglement
(Ek > 1, C[⇢] > 0), steerability (S[⇢] > 1) and CHSH
violation (R⇤

CHSH
> 1).

We identify two main reasons for this disappointing re-
sult. The first is the effect of false solutions of the kine-
matic reconstruction. The false solutions contribute to
the measurements as much as the true solutions.3 The
other effect is the smearing of the beam energies and
the energy mismeasurements for the final state particles.
These impact the reconstruction of the tau momenta, in
particular the direction of the tau leptons. In addition,
since the tau leptons are highly boosted, a small error on
their directions results in a large error on the ⇡± distri-
bution measured at the reconstructed ⌧± rest frame.

B. Log-likelihood with the impact parameters

We now discuss how to overcome the limitations iden-
tified in the previous section. We note that the informa-
tion obtained from the impact parameter measurements
of tau decays has not been employed. Since tau leptons
are marginally long-lived, c⌧ = 87.11 µm [50], and highly
boosted, one can observe a mismatch between the inter-
action point and the origin of the ⇡± in ⌧± ! ⌫⇡±.
The impact parameter ~b± is the minimal displacement
of the extrapolated ⇡± trajectory from the interaction

3 We however checked that when smearing is turned off, even if
only false solutions are used for the measurements, the true val-
ues for Cab (and therefore also for R⇤

CHSH
and Ek) are recovered

as in the case where only true solutions are used. When smearing
is switched on, both solutions are different from the MC truth
and we therefore loose the notion of true and false solutions.

point. The magnitude of the impact parameter |~b±| fol-
lows an exponentially falling distribution with the mean
|~b±| ⇠ 100µm for E⌧± ⇠ mH/2, which is significantly
larger than the experimental resolutions, �bT

' 2µm
(transverse) and �bz

' 5µm (longitudinal) [32].
If all quantities are accurately measured, the impact

parameter, ~b±, from the ⌧± ! ⌫⇡± decay, is related to
the directions of ⌧+ and ⇡+ and their angle ⇥± by [53]

~b± = |~b±| ·
⇥
e⌧± · sin�1 ⇥± � e⇡± · tan�1 ⇥±

⇤

⌘ ~breco

± (e⌧±) , (39)

where e⌧± and e⇡± are the unit vectors pointing to the
directions of ⌧± and ⇡±, respectively, and cos⇥± ⌘ (e⌧± ·
e⇡±). In the second line, we defined a 3-vector function
~breco

± (e⌧±) and emphasised its dependence on e⌧± .
We use this information to curb the effects of energy

mismeasurement. First, we shift the energy of a visible
particle ↵ (↵ = ⇡±, x, x̄) from the observed value as

Eobs

↵
! E↵(�↵) = (1 + �E · �↵) · Eobs

↵
, (40)

where �↵ is a nuisance parameter characterising the
amount of the shift with respect to the energy resolution
�E . Using these shifted energies, we solve the kinemat-
ical constraints, as outlined in Appendix C, and obtain
the tau directions as functions of the nuisance parame-
ters, eis

⌧±(���), up to two-fold solutions, is = 1, 2, where
��� = {�+

⇡
, ��

⇡
, �x, �x̄}. Based on the mismatch between the

observed and reconstructed impact parameters,

~�is

b±
(���) ⌘ ~b± �~breco

±
�
eis
⌧+(���)

�
, (41)

we define a contribution to the log-likelihood for a solu-
tion is as

Lis(���) = Lis
+
(���) + Lis

�(���) (42)

with

Lis
±(���) =

[�is

b±
(���)]2

x
+ [�is

b±
(���)]2

y

�2

bT

+
[�is

b±
(���)]2

z

�2

bz

. (43)

The total log-likelihood function is then defined as

L(���) = min
⇥
L1(���), L2(���)

⇤
+ �2

⇡+ + �2

⇡� + �2

x
+ �2

x̄
. (44)
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L(���) = min
⇥
L1(���), L2(���)

⇤
+ �2

⇡+ + �2

⇡� + �2

x
+ �2

x̄
. (44)

( 2-fold solutions:  )is = 1, 2

(α = π+, π−, x, x̄)

(σbT
= 2μm, σbz

= 5μm)
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Lis(���) = Lis
+(���) + Lis

�(���) + �2⇡+ + �2⇡� + �2x + �2x̄ .  ← We choose  and  to minimises this.δ is
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for signal/background separation is the invariant mass
of the visible decay products of two taus, mvis(⌧+⌧�).
However, due to presence of neutrinos in tau decays, the
mvis(⌧+⌧�) distributions have long tails and the signal
and background distributions therefore overlap. A usual
practice to overcome this problem is to try to reconstruct
the tau momenta by making some assumption on the neu-
trino momenta, either based on kinematics (e.g. collinear
approximation) or the knowledge of the Standard Model
(e.g. likelihood approach). However, this is not an option
here, since our aim is to measure the angular distribution
and making such assumptions defeats our purpose.

At e+e� colliders, the main production channel near
the threshold,

p
s ⇠ (mH + mZ), is e+e� ! ZH fol-

lowed by Z ! qq̄/`+`� and H ! ⌧+⌧�. The main
background is e+e� ! Z⌧+⌧�, where the pair of taus
comes from an off-shell photon. Unlike hadron colliders,
the full 4-momentum, Pµ

in
, of the initial state (e+e� pair)

is precisely known at lepton colliders. From this and the
measured Z-boson momentum, pµ

Z
= (pq/`� + pq̄/`+)

µ,
one can reconstruct the Higgs momentum as

pµ
H

= Pµ

in
� pµ

Z
(35)

in a good accuracy independently from the Higgs de-
cays. The distribution of the recoil mass, mrecoil =p

(Pin � pZ)2, therefore sharply peaks at the Higgs mass
in the signal. By selecting events that fall within an nar-
row window, |mrecoil�mH | < 5 GeV (Is 5 GeV optimal?),
one can achieve background/signal ⇠? with the signal ef-
ficiency ?%.

The second advantage of e+e� colliders over hadron
colliders is the ability of reconstructing two tau mo-
menta by solving kinematical constraints. This is possi-
ble thanks to the fact that the initial state 4-momentum,
Pµ

in
, is known in a good precision. This is important for

the C-matrix measurement and the Bell inequality test
since they are based on the angular distributions of u
and ū, which must be performed at the rest frames of
⌧� and ⌧+, respectively. Since taus are heavily boosted,
a small error on the tau momentum leads to a large er-
ror on the angular distribution when boosted to the tau
rest frame. Precise reconstruction of the tau momenta is
therefore crucial for the C-matrix measurement and Bell
inequality test.

We consider two benchmark collider scenarios labelled
by “ILC” [23] and “FCC-ee” [24]. The relevant parameters
we use in our simulation are listed in the table below:
We notice that the beam energy resolution is significantly
better for FCC-ee, which will have a significant impact on
the Bell inequality test as we will see in the next section.
We assume the e+e� beams are unpolarised for both ILC
and FCC-ee.

VI. EVENT ANALYSIS AND RESULTS

In our analysis, we focus on the tau decay modes:

⌧� ! ⌫⌧⇡
�, ⌧+ ! ⌫̄⌧⇡

+ (36)

ILC FCC-ee
energy (GeV) 250 240

luminosity (ab�1) 3 5
resolution e

+ (%) 0.18 0.83 · 10�4

resolution e
� (%) 0.27 0.83 · 10�4

�(e+e� ! HZ) (fb) 240.1 240.3
# of signal (� · BR · L) 414 691

Table I: Parameters for benchmark lepton colliders
[23, 24].

with Br(⌧� ! ⌫⇡�) = 0.109 [25]. For these decay modes,
the spin analyzing power is maximum, ↵f,d↵f̄ ,d̄

= �1.
We generate signal events with MadGraph5_aMC@NLO [26]
at leading order with the Standard Model, i.e. (, �) =
(1, 0). The beam energies are smeared according to the
parameters in Table I. We consider only “neutrinoless” Z-
boson decay modes, Z ! xx̄ with xx̄ = qq̄, e+e�, µ+µ�.
ILC and FCC-ee are expected to produce NILC = 414.3
and NFCC = 691.0 signal events, [e+e� ! HZ, Z ! xx̄,
H ! ⌧+⌧�, ⌧± ! ⌫⇡±], respectively. We then further
multiply the efficiency, ✏ILC = 0.99 and ✏FCC = 0.99,
corresponding to the event selection, |mrecoil � mH | <
5 GeV. ? The background is negligible with this cut.
We perform 100 pseudo-experiments for each benchmark
collider and estimate the statistical uncertainties on the
measurements.

In order to take account of the energy mismeasure-
ment, we smear the energies of all visible particles in the
final state as

Etrue ! Eobs = (1 + �E · !) · Etrue (37)

with the energy resolution �E = 0.03 [23], where ! is a
random number drawn from the normal distribution.

A. Solving kinematical constraints

Due to the presence of neutrinos in Eq. (36), the mo-
menta of two taus are not measured. To perform mea-
surements of the C-matrix and R⇤

CHSH
, the momenta of

two neutrinos must be reconstructed by solving kinemat-
ical constraints. For 6 unknown momentum components,
there are two mass-shell constraints: m2

⌧
= (p⌫⌧

+ p⇡�)2

and m2

⌧
= (p⌫̄⌧

+ p⇡+)2, and four conditions from the
energy-momentum conservation: (Pin � pZ)µ = (p⌫⌧

+
p⇡� + p⌫̄⌧

+ p⇡+)µ, and events can be fully reconstructed
up to two-fold solutions: is = 1, 2 (see Appendix B for
details).

The system is first boosted to the rest from of H. For
each solution, is, we then boost the system to the mea-
sured rest frame of ⌧� and calculate the r, n, k compo-
nents of the ⇡� direction, i.e. (uis

r
, uis

n
, uis

k
). The ⇡+ di-

rection, (ūis
r
, ūis

n
, ūis

k
), are obtained at the measured rest

frame of ⌧+ in the same way. For the Bell inequality
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+
p⇡� + p⌫̄⌧

+ p⇡+)µ, and events can be fully reconstructed
up to two-fold solutions: is = 1, 2 (see Appendix B for
details).

The system is first boosted to the rest from of H. For
each solution, is, we then boost the system to the mea-
sured rest frame of ⌧� and calculate the r, n, k compo-
nents of the ⇡� direction, i.e. (uis

r
, uis

n
, uis

k
). The ⇡+ di-

rection, (ūis
r
, ūis

n
, ūis

k
), are obtained at the measured rest

frame of ⌧+ in the same way. For the Bell inequality
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Table II: Result of quantum property measurements with a simple kinematical reconstruction method.

test, R⇤
CHSH

⌘ RCHSH(a⇤,a0
⇤,b⇤,b0

⇤) is calculated using
Eqs. (26) and (27). Both solutions, is = 1, 2, are included
in the calculation of Cab and R⇤

CHSH
.

The result of the measurements for Cab, Ek, C[⇢], S[⇢]
and R⇤

CHSH
is summarised in Table II. We see that the

C-matrix is measured as a diagonal form with good ac-
curacy. However, the diagonal elements are far off from
the true values, C = diag(1, 1,�1). Not only the magni-
tudes are significantly less than one but also the signs are
flipped for all diagonal components. We also see no clear
indication of the quantum correlations, i.e. entanglement
(Ek > 1, C[⇢] > 0), steerability (S[⇢] > 1) and CHSH
violation (R⇤

CHSH
> 1).

We identify two main reasons for this disappointing re-
sult. The first is the effect of false solutions of the kine-
matic reconstruction. The false solutions contribute to
the measurements as much as the true solutions.3 The
other effect is the smearing of the beam energies and
the energy mismeasurements for the final state particles.
These impact the reconstruction of the tau momenta, in
particular the direction of the tau leptons. In addition,
since the tau leptons are highly boosted, a small error on
their directions results in a large error on the ⇡± distri-
bution measured at the reconstructed ⌧± rest frame.

B. Log-likelihood with the impact parameters

We now discuss how to overcome the limitations iden-
tified in the previous section. We note that the informa-
tion obtained from the impact parameter measurements
of tau decays has not been employed. Since tau leptons
are marginally long-lived, c⌧ = 87.11 µm [50], and highly
boosted, one can observe a mismatch between the inter-
action point and the origin of the ⇡± in ⌧± ! ⌫⇡±.
The impact parameter ~b± is the minimal displacement
of the extrapolated ⇡± trajectory from the interaction

3 We however checked that when smearing is turned off, even if
only false solutions are used for the measurements, the true val-
ues for Cab (and therefore also for R⇤

CHSH
and Ek) are recovered

as in the case where only true solutions are used. When smearing
is switched on, both solutions are different from the MC truth
and we therefore loose the notion of true and false solutions.

point. The magnitude of the impact parameter |~b±| fol-
lows an exponentially falling distribution with the mean
|~b±| ⇠ 100µm for E⌧± ⇠ mH/2, which is significantly
larger than the experimental resolutions, �bT

' 2µm
(transverse) and �bz

' 5µm (longitudinal) [32].
If all quantities are accurately measured, the impact

parameter, ~b±, from the ⌧± ! ⌫⇡± decay, is related to
the directions of ⌧+ and ⇡+ and their angle ⇥± by [53]

~b± = |~b±| ·
⇥
e⌧± · sin�1 ⇥± � e⇡± · tan�1 ⇥±

⇤

⌘ ~breco

± (e⌧±) , (39)

where e⌧± and e⇡± are the unit vectors pointing to the
directions of ⌧± and ⇡±, respectively, and cos⇥± ⌘ (e⌧± ·
e⇡±). In the second line, we defined a 3-vector function
~breco

± (e⌧±) and emphasised its dependence on e⌧± .
We use this information to curb the effects of energy

mismeasurement. First, we shift the energy of a visible
particle ↵ (↵ = ⇡±, x, x̄) from the observed value as

Eobs

↵
! E↵(�↵) = (1 + �E · �↵) · Eobs

↵
, (40)

where �↵ is a nuisance parameter characterising the
amount of the shift with respect to the energy resolution
�E . Using these shifted energies, we solve the kinemat-
ical constraints, as outlined in Appendix C, and obtain
the tau directions as functions of the nuisance parame-
ters, eis

⌧±(���), up to two-fold solutions, is = 1, 2, where
��� = {�+

⇡
, ��

⇡
, �x, �x̄}. Based on the mismatch between the

observed and reconstructed impact parameters,

~�is

b±
(���) ⌘ ~b± �~breco

±
�
eis
⌧+(���)

�
, (41)

we define a contribution to the log-likelihood for a solu-
tion is as

Lis(���) = Lis
+
(���) + Lis

�(���) (42)

with

Lis
±(���) =

[�is

b±
(���)]2

x
+ [�is

b±
(���)]2

y

�2

bT

+
[�is

b±
(���)]2

z

�2

bz

. (43)

The total log-likelihood function is then defined as

L(���) = min
⇥
L1(���), L2(���)

⇤
+ �2

⇡+ + �2

⇡� + �2

x
+ �2

x̄
. (44)
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R
⇤
CHSH 0.769± 0.189 0.703± 0.134

Table II: Result of quantum property measurements with a simple kinematical reconstruction method.

test, R⇤
CHSH

⌘ RCHSH(a⇤,a0
⇤,b⇤,b0

⇤) is calculated using
Eqs. (26) and (27). Both solutions, is = 1, 2, are included
in the calculation of Cab and R⇤

CHSH
.

The result of the measurements for Cab, Ek, C[⇢], S[⇢]
and R⇤

CHSH
is summarised in Table II. We see that the

C-matrix is measured as a diagonal form with good ac-
curacy. However, the diagonal elements are far off from
the true values, C = diag(1, 1,�1). Not only the magni-
tudes are significantly less than one but also the signs are
flipped for all diagonal components. We also see no clear
indication of the quantum correlations, i.e. entanglement
(Ek > 1, C[⇢] > 0), steerability (S[⇢] > 1) and CHSH
violation (R⇤

CHSH
> 1).

We identify two main reasons for this disappointing re-
sult. The first is the effect of false solutions of the kine-
matic reconstruction. The false solutions contribute to
the measurements as much as the true solutions.3 The
other effect is the smearing of the beam energies and
the energy mismeasurements for the final state particles.
These impact the reconstruction of the tau momenta, in
particular the direction of the tau leptons. In addition,
since the tau leptons are highly boosted, a small error on
their directions results in a large error on the ⇡± distri-
bution measured at the reconstructed ⌧± rest frame.

B. Log-likelihood with the impact parameters

We now discuss how to overcome the limitations iden-
tified in the previous section. We note that the informa-
tion obtained from the impact parameter measurements
of tau decays has not been employed. Since tau leptons
are marginally long-lived, c⌧ = 87.11 µm [50], and highly
boosted, one can observe a mismatch between the inter-
action point and the origin of the ⇡± in ⌧± ! ⌫⇡±.
The impact parameter ~b± is the minimal displacement
of the extrapolated ⇡± trajectory from the interaction

3 We however checked that when smearing is turned off, even if
only false solutions are used for the measurements, the true val-
ues for Cab (and therefore also for R⇤

CHSH
and Ek) are recovered

as in the case where only true solutions are used. When smearing
is switched on, both solutions are different from the MC truth
and we therefore loose the notion of true and false solutions.

point. The magnitude of the impact parameter |~b±| fol-
lows an exponentially falling distribution with the mean
|~b±| ⇠ 100µm for E⌧± ⇠ mH/2, which is significantly
larger than the experimental resolutions, �bT

' 2µm
(transverse) and �bz

' 5µm (longitudinal) [32].
If all quantities are accurately measured, the impact

parameter, ~b±, from the ⌧± ! ⌫⇡± decay, is related to
the directions of ⌧+ and ⇡+ and their angle ⇥± by [53]

~b± = |~b±| ·
⇥
e⌧± · sin�1 ⇥± � e⇡± · tan�1 ⇥±

⇤

⌘ ~breco

± (e⌧±) , (39)

where e⌧± and e⇡± are the unit vectors pointing to the
directions of ⌧± and ⇡±, respectively, and cos⇥± ⌘ (e⌧± ·
e⇡±). In the second line, we defined a 3-vector function
~breco

± (e⌧±) and emphasised its dependence on e⌧± .
We use this information to curb the effects of energy

mismeasurement. First, we shift the energy of a visible
particle ↵ (↵ = ⇡±, x, x̄) from the observed value as

Eobs

↵
! E↵(�↵) = (1 + �E · �↵) · Eobs

↵
, (40)

where �↵ is a nuisance parameter characterising the
amount of the shift with respect to the energy resolution
�E . Using these shifted energies, we solve the kinemat-
ical constraints, as outlined in Appendix C, and obtain
the tau directions as functions of the nuisance parame-
ters, eis

⌧±(���), up to two-fold solutions, is = 1, 2, where
��� = {�+

⇡
, ��

⇡
, �x, �x̄}. Based on the mismatch between the

observed and reconstructed impact parameters,

~�is

b±
(���) ⌘ ~b± �~breco

±
�
eis
⌧+(���)

�
, (41)

we define a contribution to the log-likelihood for a solu-
tion is as

Lis(���) = Lis
+
(���) + Lis

�(���) (42)

with

Lis
±(���) =

[�is

b±
(���)]2

x
+ [�is

b±
(���)]2

y

�2

bT

+
[�is

b±
(���)]2

z

�2

bz

. (43)

The total log-likelihood function is then defined as

L(���) = min
⇥
L1(���), L2(���)

⇤
+ �2

⇡+ + �2

⇡� + �2

x
+ �2

x̄
. (44)

(α = π+, π−, x, x̄)
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R
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Table II: Result of quantum property measurements with a simple kinematical reconstruction method.

test, R⇤
CHSH

⌘ RCHSH(a⇤,a0
⇤,b⇤,b0

⇤) is calculated using
Eqs. (26) and (27). Both solutions, is = 1, 2, are included
in the calculation of Cab and R⇤

CHSH
.

The result of the measurements for Cab, Ek, C[⇢], S[⇢]
and R⇤

CHSH
is summarised in Table II. We see that the

C-matrix is measured as a diagonal form with good ac-
curacy. However, the diagonal elements are far off from
the true values, C = diag(1, 1,�1). Not only the magni-
tudes are significantly less than one but also the signs are
flipped for all diagonal components. We also see no clear
indication of the quantum correlations, i.e. entanglement
(Ek > 1, C[⇢] > 0), steerability (S[⇢] > 1) and CHSH
violation (R⇤

CHSH
> 1).

We identify two main reasons for this disappointing re-
sult. The first is the effect of false solutions of the kine-
matic reconstruction. The false solutions contribute to
the measurements as much as the true solutions.3 The
other effect is the smearing of the beam energies and
the energy mismeasurements for the final state particles.
These impact the reconstruction of the tau momenta, in
particular the direction of the tau leptons. In addition,
since the tau leptons are highly boosted, a small error on
their directions results in a large error on the ⇡± distri-
bution measured at the reconstructed ⌧± rest frame.

B. Log-likelihood with the impact parameters

We now discuss how to overcome the limitations iden-
tified in the previous section. We note that the informa-
tion obtained from the impact parameter measurements
of tau decays has not been employed. Since tau leptons
are marginally long-lived, c⌧ = 87.11 µm [50], and highly
boosted, one can observe a mismatch between the inter-
action point and the origin of the ⇡± in ⌧± ! ⌫⇡±.
The impact parameter ~b± is the minimal displacement
of the extrapolated ⇡± trajectory from the interaction

3 We however checked that when smearing is turned off, even if
only false solutions are used for the measurements, the true val-
ues for Cab (and therefore also for R⇤

CHSH
and Ek) are recovered

as in the case where only true solutions are used. When smearing
is switched on, both solutions are different from the MC truth
and we therefore loose the notion of true and false solutions.

point. The magnitude of the impact parameter |~b±| fol-
lows an exponentially falling distribution with the mean
|~b±| ⇠ 100µm for E⌧± ⇠ mH/2, which is significantly
larger than the experimental resolutions, �bT

' 2µm
(transverse) and �bz

' 5µm (longitudinal) [32].
If all quantities are accurately measured, the impact

parameter, ~b±, from the ⌧± ! ⌫⇡± decay, is related to
the directions of ⌧+ and ⇡+ and their angle ⇥± by [53]

~b± = |~b±| ·
⇥
e⌧± · sin�1 ⇥± � e⇡± · tan�1 ⇥±

⇤

⌘ ~breco

± (e⌧±) , (39)

where e⌧± and e⇡± are the unit vectors pointing to the
directions of ⌧± and ⇡±, respectively, and cos⇥± ⌘ (e⌧± ·
e⇡±). In the second line, we defined a 3-vector function
~breco

± (e⌧±) and emphasised its dependence on e⌧± .
We use this information to curb the effects of energy

mismeasurement. First, we shift the energy of a visible
particle ↵ (↵ = ⇡±, x, x̄) from the observed value as

Eobs

↵
! E↵(�↵) = (1 + �E · �↵) · Eobs

↵
, (40)

where �↵ is a nuisance parameter characterising the
amount of the shift with respect to the energy resolution
�E . Using these shifted energies, we solve the kinemat-
ical constraints, as outlined in Appendix C, and obtain
the tau directions as functions of the nuisance parame-
ters, eis

⌧±(���), up to two-fold solutions, is = 1, 2, where
��� = {�+

⇡
, ��

⇡
, �x, �x̄}. Based on the mismatch between the

observed and reconstructed impact parameters,

~�is

b±
(���) ⌘ ~b± �~breco

±
�
eis
⌧+(���)

�
, (41)

we define a contribution to the log-likelihood for a solu-
tion is as

Lis(���) = Lis
+
(���) + Lis

�(���) (42)

with

Lis
±(���) =

[�is

b±
(���)]2

x
+ [�is

b±
(���)]2

y

�2

bT

+
[�is

b±
(���)]2

z

�2

bz

. (43)

The total log-likelihood function is then defined as

L(���) = min
⇥
L1(���), L2(���)

⇤
+ �2

⇡+ + �2

⇡� + �2

x
+ �2

x̄
. (44)
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C[⇢] 0.778± 0.126 0.871± 0.084
S[⇢] 1.760± 0.161 1.851± 0.111

R
⇤
CHSH 1.103± 0.163 1.276± 0.094

Table III: Result of quantum property measurements with a log-likelihood method incorporating the impact
parameter information.

The log-likelihood function, L(���), is to be minimised
over the nuisance parameters, ���. We denote the location
of the minimum by ���⇤. We define “the most likely” so-
lution i⇤ as the solution that gives the smaller Lis , i.e.
Li⇤(���⇤) = min

⇥
L1(���⇤), L2(���⇤)

⇤
. Our best guess for the

tau lepton momenta are therefore given by

p⇤
⌧± = pi⇤

⌧±(���
⇤) . (45)

In what follows we use p⇤
⌧± in the quantum property mea-

surements.
In Table III we show the result of our quantum prop-

erty measurements when the impact parameter informa-
tion of tau decays is incorporated in the log-likelihood.
We see that for both ILC and FCC-ee the components
of the C-matrix is correctly measured including the sign.
The entanglement signature Ek and the concurrence C[⇢]
are also measured with a good accuracy and the forma-
tion of entanglement (Ek > 1 and C[⇢] > 0) is observed
at more than 5�. The steerability variable, S[⇢], is also
well measured and the Standard Model value, S[⇢] = 2,
is more or less reproduced. The steerability condition,
S[⇢] > 1, is observed at ⇠ 4� for the ILC and � 5�
for the FCC-ee. Observation of Bell-nonlocalilty is the
most challenging one since it is the strongest quantum
correlation. As can be seen in the last line of Table III,
the violation of the CHSH inequality is confirmed at the
FCC-ee at ⇠ 3� level, while R⇤

CHSH
> 1 is not observed

at the ILC beyond the statistical uncertainty. The su-
perior performance of FCC-ee is attributed to the fact
that the beam energy resolution of FCC-ee is much bet-
ter than ILC. The precise knowledge of the initial state
momentum is crucial to accurately reconstruct the rest
frame of ⌧±.

VII. CP MEASUREMENTS

Since the C-matrix is sensitive to the CP phase �, one
can use the result of C-matrix measurement and derive
a constraint on �. From Eq. (19) we see that only the
rn part (i.e. the upper-left 2 ⇥ 2 part) of the C-matrix
is sensitive to �. By comparing the measured C-matrix
entries in the rn part and the prediction in Eq. (19), we

CL ILC FCC-ee
68.3% [�7.94�, 6.20�] [�5.17�, 5.11�]
95.5% [�10.89�, 9.21�] [�7.36�, 7.31�]
99.7% [�13.84�, 12.10�] [�9.21�, 9.21�]

Table IV: Expected sensitivities on the CP phase �.

Figure 2: ��2 as a fuction of the CP phase �.

construct the �2 function as

�2(�) =
(Crr � cos 2�)2

�2
rr

+
(Crn � sin 2�)2

�2
rn

+
(Cnn � cos 2�)2

�2
nn

+
(Cnr + sin 2�)2

�2
nr

, (46)

where Cij and �ij are the central value and the stan-
dard deviation, respectively, obtained from the analysis
in subsection VI B. The goodness of fits are found to
be �2

min
(ILC)/d.o.f. = 0.93/3 and �2

min
(FCC-ee)/d.o.f.=

0.86/3 for each benchmark collider.
The minimum of �2 appear at the vicinity of three CP-

conserving points: � = 0, ±180� (CP-even) and ±90�

(CP-odd). Focusing on the minimum around � = 0,
the 1, 2 and 3 � regions of � obtained from this anal-
ysis are listed in Table IV. The analysis is based on
��2(�) ⌘ �2(�) � �2

min
, whose values around � = 0 is

Result 2 2211.10513

CSM
ij = (

1
1

−1)
ESM[ρ] = 3

RSM
CHSH = 2 ≃ 1.414

𝒮SM[ρ] = 2
Entanglement ⟹ E > 1

Bell-nonlocal ⟹ RCHSH > 1

Steerablity ⟹ 𝒮[ρ] > 1

SM values:
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R
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Table III: Result of quantum property measurements with a log-likelihood method incorporating the impact
parameter information.

The log-likelihood function, L(���), is to be minimised
over the nuisance parameters, ���. We denote the location
of the minimum by ���⇤. We define “the most likely” so-
lution i⇤ as the solution that gives the smaller Lis , i.e.
Li⇤(���⇤) = min

⇥
L1(���⇤), L2(���⇤)

⇤
. Our best guess for the

tau lepton momenta are therefore given by

p⇤
⌧± = pi⇤

⌧±(���
⇤) . (45)

In what follows we use p⇤
⌧± in the quantum property mea-

surements.
In Table III we show the result of our quantum prop-

erty measurements when the impact parameter informa-
tion of tau decays is incorporated in the log-likelihood.
We see that for both ILC and FCC-ee the components
of the C-matrix is correctly measured including the sign.
The entanglement signature Ek and the concurrence C[⇢]
are also measured with a good accuracy and the forma-
tion of entanglement (Ek > 1 and C[⇢] > 0) is observed
at more than 5�. The steerability variable, S[⇢], is also
well measured and the Standard Model value, S[⇢] = 2,
is more or less reproduced. The steerability condition,
S[⇢] > 1, is observed at ⇠ 4� for the ILC and � 5�
for the FCC-ee. Observation of Bell-nonlocalilty is the
most challenging one since it is the strongest quantum
correlation. As can be seen in the last line of Table III,
the violation of the CHSH inequality is confirmed at the
FCC-ee at ⇠ 3� level, while R⇤

CHSH
> 1 is not observed

at the ILC beyond the statistical uncertainty. The su-
perior performance of FCC-ee is attributed to the fact
that the beam energy resolution of FCC-ee is much bet-
ter than ILC. The precise knowledge of the initial state
momentum is crucial to accurately reconstruct the rest
frame of ⌧±.

VII. CP MEASUREMENTS

Since the C-matrix is sensitive to the CP phase �, one
can use the result of C-matrix measurement and derive
a constraint on �. From Eq. (19) we see that only the
rn part (i.e. the upper-left 2 ⇥ 2 part) of the C-matrix
is sensitive to �. By comparing the measured C-matrix
entries in the rn part and the prediction in Eq. (19), we

CL ILC FCC-ee
68.3% [�7.94�, 6.20�] [�5.17�, 5.11�]
95.5% [�10.89�, 9.21�] [�7.36�, 7.31�]
99.7% [�13.84�, 12.10�] [�9.21�, 9.21�]

Table IV: Expected sensitivities on the CP phase �.

Figure 2: ��2 as a fuction of the CP phase �.

construct the �2 function as

�2(�) =
(Crr � cos 2�)2

�2
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+
(Crn � sin 2�)2
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+
(Cnn � cos 2�)2
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+
(Cnr + sin 2�)2

�2
nr

, (46)

where Cij and �ij are the central value and the stan-
dard deviation, respectively, obtained from the analysis
in subsection VI B. The goodness of fits are found to
be �2

min
(ILC)/d.o.f. = 0.93/3 and �2

min
(FCC-ee)/d.o.f.=

0.86/3 for each benchmark collider.
The minimum of �2 appear at the vicinity of three CP-

conserving points: � = 0, ±180� (CP-even) and ±90�

(CP-odd). Focusing on the minimum around � = 0,
the 1, 2 and 3 � regions of � obtained from this anal-
ysis are listed in Table IV. The analysis is based on
��2(�) ⌘ �2(�) � �2

min
, whose values around � = 0 is

Result 2 

∼ 3σ
∼ 3σ

∼ 5σ ≫ 5σ

∼ 5σ
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CSM
ij = (

1
1

−1)
ESM[ρ] = 3

RSM
CHSH = 2 ≃ 1.414

𝒮SM[ρ] = 2
Entanglement ⟹ E > 1

Bell-nonlocal ⟹ RCHSH > 1

Steerablity ⟹ 𝒮[ρ] > 1

SM values:

∼ 5σ ≫ 5σ
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ILC FCC-ee

Cij

0

@
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R
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CHSH 1.103± 0.163 1.276± 0.094

Table III: Result of quantum property measurements with a log-likelihood method incorporating the impact
parameter information.

The log-likelihood function, L(���), is to be minimised
over the nuisance parameters, ���. We denote the location
of the minimum by ���⇤. We define “the most likely” so-
lution i⇤ as the solution that gives the smaller Lis , i.e.
Li⇤(���⇤) = min

⇥
L1(���⇤), L2(���⇤)

⇤
. Our best guess for the

tau lepton momenta are therefore given by

p⇤
⌧± = pi⇤

⌧±(���
⇤) . (45)

In what follows we use p⇤
⌧± in the quantum property mea-

surements.
In Table III we show the result of our quantum prop-

erty measurements when the impact parameter informa-
tion of tau decays is incorporated in the log-likelihood.
We see that for both ILC and FCC-ee the components
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the violation of the CHSH inequality is confirmed at the
FCC-ee at ⇠ 3� level, while R⇤

CHSH
> 1 is not observed

at the ILC beyond the statistical uncertainty. The su-
perior performance of FCC-ee is attributed to the fact
that the beam energy resolution of FCC-ee is much bet-
ter than ILC. The precise knowledge of the initial state
momentum is crucial to accurately reconstruct the rest
frame of ⌧±.

VII. CP MEASUREMENTS

Since the C-matrix is sensitive to the CP phase �, one
can use the result of C-matrix measurement and derive
a constraint on �. From Eq. (19) we see that only the
rn part (i.e. the upper-left 2 ⇥ 2 part) of the C-matrix
is sensitive to �. By comparing the measured C-matrix
entries in the rn part and the prediction in Eq. (19), we
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68.3% [�7.94�, 6.20�] [�5.17�, 5.11�]
95.5% [�10.89�, 9.21�] [�7.36�, 7.31�]
99.7% [�13.84�, 12.10�] [�9.21�, 9.21�]

Table IV: Expected sensitivities on the CP phase �.

Figure 2: ��2 as a fuction of the CP phase �.

construct the �2 function as

�2(�) =
(Crr � cos 2�)2

�2
rr

+
(Crn � sin 2�)2

�2
rn

+
(Cnn � cos 2�)2

�2
nn

+
(Cnr + sin 2�)2

�2
nr

, (46)

where Cij and �ij are the central value and the stan-
dard deviation, respectively, obtained from the analysis
in subsection VI B. The goodness of fits are found to
be �2

min
(ILC)/d.o.f. = 0.93/3 and �2

min
(FCC-ee)/d.o.f.=

0.86/3 for each benchmark collider.
The minimum of �2 appear at the vicinity of three CP-

conserving points: � = 0, ±180� (CP-even) and ±90�

(CP-odd). Focusing on the minimum around � = 0,
the 1, 2 and 3 � regions of � obtained from this anal-
ysis are listed in Table IV. The analysis is based on
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min
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for signal/background separation is the invariant mass
of the visible decay products of two taus, mvis(⌧+⌧�).
However, due to presence of neutrinos in tau decays, the
mvis(⌧+⌧�) distributions have long tails and the signal
and background distributions therefore overlap. A usual
practice to overcome this problem is to try to reconstruct
the tau momenta by making some assumption on the neu-
trino momenta, either based on kinematics (e.g. collinear
approximation) or the knowledge of the Standard Model
(e.g. likelihood approach). However, this is not an option
here, since our aim is to measure the angular distribution
and making such assumptions defeats our purpose.

At e+e� colliders, the main production channel near
the threshold,

p
s ⇠ (mH + mZ), is e+e� ! ZH fol-

lowed by Z ! qq̄/`+`� and H ! ⌧+⌧�. The main
background is e+e� ! Z⌧+⌧�, where the pair of taus
comes from an off-shell photon. Unlike hadron colliders,
the full 4-momentum, Pµ

in
, of the initial state (e+e� pair)

is precisely known at lepton colliders. From this and the
measured Z-boson momentum, pµ

Z
= (pq/`� + pq̄/`+)

µ,
one can reconstruct the Higgs momentum as

pµ
H

= Pµ

in
� pµ

Z
(35)

in a good accuracy independently from the Higgs de-
cays. The distribution of the recoil mass, mrecoil =p

(Pin � pZ)2, therefore sharply peaks at the Higgs mass
in the signal. By selecting events that fall within an nar-
row window, |mrecoil�mH | < 5 GeV (Is 5 GeV optimal?),
one can achieve background/signal ⇠? with the signal ef-
ficiency ?%.

The second advantage of e+e� colliders over hadron
colliders is the ability of reconstructing two tau mo-
menta by solving kinematical constraints. This is possi-
ble thanks to the fact that the initial state 4-momentum,
Pµ

in
, is known in a good precision. This is important for

the C-matrix measurement and the Bell inequality test
since they are based on the angular distributions of u
and ū, which must be performed at the rest frames of
⌧� and ⌧+, respectively. Since taus are heavily boosted,
a small error on the tau momentum leads to a large er-
ror on the angular distribution when boosted to the tau
rest frame. Precise reconstruction of the tau momenta is
therefore crucial for the C-matrix measurement and Bell
inequality test.

We consider two benchmark collider scenarios labelled
by “ILC” [23] and “FCC-ee” [24]. The relevant parameters
we use in our simulation are listed in the table below:
We notice that the beam energy resolution is significantly
better for FCC-ee, which will have a significant impact on
the Bell inequality test as we will see in the next section.
We assume the e+e� beams are unpolarised for both ILC
and FCC-ee.

VI. EVENT ANALYSIS AND RESULTS

In our analysis, we focus on the tau decay modes:

⌧� ! ⌫⌧⇡
�, ⌧+ ! ⌫̄⌧⇡

+ (36)

ILC FCC-ee
energy (GeV) 250 240

luminosity (ab�1) 3 5
beam resolution e

+ (%) 0.18 0.83 · 10�4

beam resolution e
� (%) 0.27 0.83 · 10�4

�(e+e� ! HZ) (fb) 240.1 240.3
# of signal (� · BR · L) 414 691

Table I: Parameters for benchmark lepton colliders
[23, 24].

with Br(⌧� ! ⌫⇡�) = 0.109 [25]. For these decay modes,
the spin analyzing power is maximum, ↵f,d↵f̄ ,d̄

= �1.
We generate signal events with MadGraph5_aMC@NLO [26]
at leading order with the Standard Model, i.e. (, �) =
(1, 0). The beam energies are smeared according to the
parameters in Table I. We consider only “neutrinoless” Z-
boson decay modes, Z ! xx̄ with xx̄ = qq̄, e+e�, µ+µ�.
ILC and FCC-ee are expected to produce NILC = 414.3
and NFCC = 691.0 signal events, [e+e� ! HZ, Z ! xx̄,
H ! ⌧+⌧�, ⌧± ! ⌫⇡±], respectively. We then further
multiply the efficiency, ✏ILC = 0.99 and ✏FCC = 0.99,
corresponding to the event selection, |mrecoil � mH | <
5 GeV. ? The background is negligible with this cut.
We perform 100 pseudo-experiments for each benchmark
collider and estimate the statistical uncertainties on the
measurements.

In order to take account of the energy mismeasure-
ment, we smear the energies of all visible particles in the
final state as

Etrue ! Eobs = (1 + �E · !) · Etrue (37)

with the energy resolution �E = 0.03 [23], where ! is a
random number drawn from the normal distribution.

A. Solving kinematical constraints

Due to the presence of neutrinos in Eq. (36), the mo-
menta of two taus are not measured. To perform mea-
surements of the C-matrix and R⇤

CHSH
, the momenta of

two neutrinos must be reconstructed by solving kinemat-
ical constraints. For 6 unknown momentum components,
there are two mass-shell constraints: m2

⌧
= (p⌫⌧

+ p⇡�)2

and m2

⌧
= (p⌫̄⌧

+ p⇡+)2, and four conditions from the
energy-momentum conservation: (Pin � pZ)µ = (p⌫⌧

+
p⇡� + p⌫̄⌧

+ p⇡+)µ, and events can be fully reconstructed
up to two-fold solutions: is = 1, 2 (see Appendix B for
details).

The system is first boosted to the rest from of H. For
each solution, is, we then boost the system to the mea-
sured rest frame of ⌧� and calculate the r, n, k compo-
nents of the ⇡� direction, i.e. (uis

r
, uis

n
, uis

k
). The ⇡+ di-

rection, (ūis
r
, ūis

n
, ūis

k
), are obtained at the measured rest

frame of ⌧+ in the same way. For the Bell inequality

Superiority of FCC-ee over ILC is due to 
a better beam resolution

∼ 5σ ≫ 5σ



CP measurement
• Under CP, the spin correlation matrix transforms:  


• This can be used for a model-independent test of CP violation.  We define:

C CP CT

A ≡ (Crn − Cnr)2 + (Cnk − Ckn)2 + (Ckr − Crk)2 ≥ 0

• Observation of  immediately confirms CP violation.A ≠ 0

• From our simulation, we observe

8

Model independent CP test

Under CP, the C matrix transforms as C
CP��! CT .

This fact can be used for a model-independent test of CP.
To measure the asymmetry in the C matrix, we define

A = (Crn � Cnr)
2 + (Cnk � Ckn)

2 + (Ckr � Crk)
2 � 0 .

(46)
An experimental verification of A 6= 0 immediately con-
firms CP violation.

From the analysis described in subsection VIB, A is
measured as:

0.204± 0.173 (ILC)

0.112± 0.085 (FCC-ee)

Here, the error corresponds to a 1� statistical uncer-
tainty obtained from 100 pseudo-experiments. The re-
sult is consistent with the Standard Model (i.e. absence
of CP violation) at ⇠ 1� level.

In the explicit model defined by Eq. (15), we have
A = 4 sin2(2�). One can interpret the above model-
independent result within this model and derive bounds
on �. In the domain around � = 0, the following limits
are obtained at 1�:

|�| < 8.9o (ILC)

|�| < 6.4o (FCC-ee)

We see that these bounds are as good as the limits ob-
tained in the �2 analysis (see Table IV).

VIII. CONCLUSIONS
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Appendix A: Spin vs angular correlations

The spin correlation hsas̄bi of ⌧�⌧+ and the angular
correlation huaūbi between the ⌧�⌧+ decay products are
related by Eq. (25). To derive this result,3 we start by re-
membering Eq. (24), i.e. the conditional probability that
the decay product, d, takes the direction u (at the rest

3
Our derivation is largely based on [31].

frame of ⌧�) , when the tau spin is polarised into s di-
rection, is given by

P (u|s) = 1 + ↵f,d u · s

with the normalisation
R

d⌦u
4⇡

P (u|s) = 1.
We introduce the join probability that ⌧� and ⌧+ are

polarised into s and s̄, and write it as P (s, s̄) with normal-
isation

R
d⌦s
4⇡

d⌦s̄
4⇡

P (s, s̄) = 1. For arbitrary unit vectors
a and b, the correlation between the ⌧� and ⌧+ spin
components, sa ⌘ a · s and s̄b ⌘ b · s̄, can be written as

hsas̄bi =

Z
d⌦s

4⇡

d⌦s̄

4⇡
(a · s)(b · s̄)P (s, s̄) . (A1)

Similarly, the correlation between the components of the
u and ū vectors is given by

huaūbi =

Z
d⌦u

4⇡

d⌦ū

4⇡

d⌦s

4⇡

d⌦s̄

4⇡
(a · u)(b · ū)

⇥P (u|s)P (ū|̄s)P (s, s̄) . (A2)

We carry out the integration d⌦u by expressing u in a
polar coordinate where the pole is taken into the s direc-
tion (we call this z direction). Similarly, we represent ū
in a polar coordinate with the pole in the s̄ direction (z0
direction). Using these two coordinate systems, we have

u · s = c✓, ū · s̄ = c✓0 ,

a · u = axs✓c� + ays✓s� + azc✓,

b · ū = bx0s✓0c�0 + by0s✓0s�0 + bz0c✓0 ,

az = a · s = sa, bz0 = b · s̄0 = s̄b , (A3)

and Eq. (A2) is expressed as

huaūbi =

Z
dc✓d�

4⇡

dc✓0d�0

4⇡

d⌦s

4⇡

d⌦s̄

4⇡
(axs✓c� + ays✓s� + azc✓)

(bx0s✓0c�0 + by0s✓0s�0 + bz0c✓0)

(1 + ↵f,dc✓)(1 + ↵f 0,d0c✓0)P (s, s̄) . (A4)

Any terms depending on � or �0 will drop out by per-
forming d� and d�0 integrals, respectively. The reminder
is

huaūbi =

Z
dc✓
2

dc✓0

2

d⌦s

4⇡

d⌦s̄

4⇡
azc✓bz0c✓0(1 + ↵f,dc✓)(1� ↵f 0,d0c✓0)P (s, s̄)

=

Z ✓
d⌦s

4⇡

d⌦s̄

4⇡
sas̄bP (s, s̄)

◆

⇥
⇣Z

dc✓
2

dc✓0

2
c✓c✓0(1 + ↵f,dc✓)(1 + ↵f 0,d0c✓0)

⌘
,

(A5)

where the first bracket on the RHS is nothing but hsas̄bi
in Eq. (A1). The second bracket produces ↵f,d↵f0,d0

9
and

one obtains the result

huaūbi =
↵f,d↵f 0,d0

9
hsas̄bi .
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{A =

• This model independent bounds can be translated to the constraint on the CP-
phase  δ

Cij =
cos 2δ sin 2δ 0

−sin 2δ cos 2δ 0
0 0 −1

ℒint ∝ H ψ̄τ(cos δ+iγ5 sin δ) ψτ A(δ) = 4 sin2 2δ

consistent with 
absence of CPV



• Focusing on the region near , we find the 1-σ bounds:|δ | = 0
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Model independent CP test

Under CP, the C matrix transforms as C
CP��! CT .

This fact can be used for a model-independent test of CP.
To measure the asymmetry in the C matrix, we define

A = (Crn � Cnr)
2 + (Cnk � Ckn)

2 + (Ckr � Crk)
2 � 0 .

(46)
An experimental verification of A 6= 0 immediately con-
firms CP violation.

From the analysis described in subsection VIB, A is
measured as:

0.204± 0.173 (ILC)

0.112± 0.085 (FCC-ee)

Here, the error corresponds to a 1� statistical uncer-
tainty obtained from 100 pseudo-experiments. The re-
sult is consistent with the Standard Model (i.e. absence
of CP violation) at ⇠ 1� level.

In the explicit model defined by Eq. (15), we have
A = 4 sin2(2�). One can interpret the above model-
independent result within this model and derive bounds
on �. In the domain around � = 0, the following limits
are obtained at 1�:

|�| <
⇢

8.9o (ILC)
6.4o (FCC-ee) .

We see that these bounds are as good as the limits ob-
tained in the �2 analysis (see Table IV).
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Appendix A: Spin vs angular correlations

The spin correlation hsas̄bi of ⌧�⌧+ and the angular
correlation huaūbi between the ⌧�⌧+ decay products are
related by Eq. (25). To derive this result,3 we start by re-
membering Eq. (24), i.e. the conditional probability that
the decay product, d, takes the direction u (at the rest

3
Our derivation is largely based on [31].

frame of ⌧�) , when the tau spin is polarised into s di-
rection, is given by

P (u|s) = 1 + ↵f,d u · s

with the normalisation
R

d⌦u
4⇡

P (u|s) = 1.
We introduce the join probability that ⌧� and ⌧+ are

polarised into s and s̄, and write it as P (s, s̄) with normal-
isation

R
d⌦s
4⇡

d⌦s̄
4⇡

P (s, s̄) = 1. For arbitrary unit vectors
a and b, the correlation between the ⌧� and ⌧+ spin
components, sa ⌘ a · s and s̄b ⌘ b · s̄, can be written as

hsas̄bi =

Z
d⌦s

4⇡

d⌦s̄

4⇡
(a · s)(b · s̄)P (s, s̄) . (A1)

Similarly, the correlation between the components of the
u and ū vectors is given by

huaūbi =

Z
d⌦u

4⇡

d⌦ū

4⇡

d⌦s

4⇡

d⌦s̄

4⇡
(a · u)(b · ū)

⇥P (u|s)P (ū|̄s)P (s, s̄) . (A2)

We carry out the integration d⌦u by expressing u in a
polar coordinate where the pole is taken into the s direc-
tion (we call this z direction). Similarly, we represent ū
in a polar coordinate with the pole in the s̄ direction (z0
direction). Using these two coordinate systems, we have

u · s = c✓, ū · s̄ = c✓0 ,

a · u = axs✓c� + ays✓s� + azc✓,

b · ū = bx0s✓0c�0 + by0s✓0s�0 + bz0c✓0 ,

az = a · s = sa, bz0 = b · s̄0 = s̄b , (A3)

and Eq. (A2) is expressed as
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Any terms depending on � or �0 will drop out by per-
forming d� and d�0 integrals, respectively. The reminder
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where the first bracket on the RHS is nothing but hsas̄bi
in Eq. (A1). The second bracket produces ↵f,d↵f0,d0

9
and

one obtains the result

huaūbi =
↵f,d↵f 0,d0

9
hsas̄bi .

• Other studies:

[Hagiwara, Ma, Mori 2016]

[Jeans and G. W. Wilson 2018]

Δδ ∼ 11.5o (HL-LHC)

Δδ ∼ 4.3o (ILC)

CP measurement



Summary
• High energy tests of entanglement and Bell inequality has recently attracted an 

attention.


•  pairs from  form the EPR triplet state , 

and maximally entangled.


• We investigated feasibility of quantum property tests @ ILC and FCC-ee.


• Quantum test requires to a precise reconstruction of the tau rest frames and IP 
information is crucial to achieve this.


• Spin correlation is sensitive to CP-phase and we can measure the CP-phase as a 
byproduct of the quantum property measurement.

τ+τ− H → τ+τ− |Ψ(1,0)⟩ =
| + , − ⟩ + | − , + ⟩

2

Entanglement Steering Bell-inquality CP-phase

ILC

FCC-ee

∼ 5σ
≫ 5σ

∼ 3σ
∼ 5σ ∼ 3σ

8.9o

6.4o
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8 H ! ⌧
+
⌧

�
at a e

+
e
�
collider

We consider the measurement of the Bell inequality at an e
+
e
� collider. Our target is the production of

entangled ⌧
+
⌧
� pairs from the e+e� ! HZ, followed by H ! ⌧

+
⌧
�. To measure the spin correlation

between the two taus, we consider the tau decays, ⌧+ ! ⇡
+
⌫̄ and ⌧

+ ! ⇡
�
⌫.

We list a set of important parameters in the analysis.1

�(e+e� ! HZ)
��p

s=500GeV
= 65 fb · · · [unpolarised]

�(e+e� ! HZ)
��p

s=250GeV
= 240.1 fb · · · [unpolarised]

�(e+e� ! HZ)
��p

s=240GeV
= 240.3 fb · · · [unpolarised]

�(e+e� ! HZ)
��p

s=250GeV
= 318 fb · · · [P (e+, e�) = (+0.3,�0.8)]

BR(H ! ⌧
+
⌧
�) = 0.0632

BR(⌧� ! ⇡
�
⌫⌧ ) = 0.109

BR(Z ! µ
+
µ
�) = 0.0336

BR(Z ! jj(µµ, ee)) = 0.800

�(e+e� ! HZ)unpol
250

· BRH!⌧⌧ · [BR⌧!⇡⌫ ]
2 · BRZ!jj(µµ,ee) = 0.1442 fb

�(e+e� ! HZ)unpol
240

· BRH!⌧⌧ · [BR⌧!⇡⌫ ]
2 · BRZ!jj(µµ,ee) = 0.1443 fb

�(e+e� ! HZ)unpol
250

· BRH!⌧⌧ · [BR⌧!⇡⌫ ]
2 · BRZ!µµ = 0.0061 fb

�(e+e� ! HZ)unpol
240

· BRH!⌧⌧ · [BR⌧!⇡⌫ ]
2 · BRZ!µµ = 0.0061 fb (8.123)

The ILC luminosity can be asssumed to be 300, 1000 and 3000 fb�1. The above estimate suggests
that we cannot ask for the Z ! µµ channel to obtain a precise Z momentum.

8.1 Momentum reconstruction

Since neutrinos are invisible in the detector, one has to reconstruct the neutrino momenta, or equiva-
lently the tau momenta, by solving various kinematical constraints. We assume the four momenta of
the initial e+e� pair, P µ

in
, and the Z-boson, pµ

Z
, are acculately measured.2 This means we can obtain

the Higgs momentum accurately by
p
µ

h
= P

µ

in
� p

µ

Z
. (8.124)

The tau momenta, pµ
⌧+

and p
µ

⌧� , are unknown but the sum is constrained by

p
µ

⌧+
+ p

µ

⌧� = p
µ

h
. (8.125)

Each tau momentum is a 4-vector, so they can be expanded by four independent 4-vectors. We choose
p
µ

h
, pµ

⇡+ , p
µ

⇡� and q
µ as the basis vectors (neither orthogonal nor normalised), where we introduced

q
µ ⌘ 1

m
2

h

✏
µ⌫⇢�

p
⌫

h
p
r

⇡+ p
s

⇡� , (8.126)

which is orthogonal to the other basis vectors, (q · ph) = (q · pµ
⌧+
) = (q · pµ

⌧�) = 0. In terms of these
basis vectors, the tau momenta are expanded as

p
µ

⌧± =
1 ⌥ a

2
p
µ

h
± b

2
p
µ

⇡+ ⌥ c

2
p
µ

⇡� ± dq
µ
. (8.127)

1See [1509.02853].
2This assumption may not be justified.
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