National Science Centre POLAND
Norway grants

Quantum information and
 CP measurement in $H \rightarrow \tau^{+} \tau^{-}$ at future lepton colliders

Kazuki Sakurai
(University of Warsaw)

In collaboration with:
Mohammad Altakach, Fabio Maltoni, Kentarou Mawatari, Priyanka Lamba

Bell inequalities

- Bell inequalities have been formulated in 1964 by John Bell.

- Bell inequalities are very powerful!: derived only by assuming locality and reality of physical observables.
- Bell inequalities must be satisfied for any local-real hidden variable theories.
- QM is neither local nor real. Indeed Bell inequalities can be violated in QM.
- In 1970's-80's, the violation of Bell inequalities have been experimentally confirmed. The laws of physics cannot be both local and real. Local-real hidden variable theories were falsified.

Crauser, Horne, Shimony, Holt (1969),
Freedman and Clauser (1972),
A. Aspect et. al. (1981, 1982),
Y. H. Shih, C. O. Alley (1988),
L. K. Shalm et al. (2015) [5б]

Université Paris-Saclay \& École Polytechnique, France

John F. Clauser
J.F. Clauser \& Assoc., USA

Anton Zeilinger University of Vienna, Austria
"för experiment med semmanfiätade fotoner som pávisat brott mot Bell-olikheter och banat väg for Kvantinformationsvetenskap:"
"for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantuin infomation scrence

- In 1970's-80's, the violation of Bell inequalities have been experimentally confirmed. The laws of physics cannot be both local and real. Local-real hidden variable theories were falsified.

Crauser, Horne, Shimony, Holt (1969), Freedman and Clauser (1972),
A. Aspect et. al. (1981, 1982),
Y. H. Shih, C. O. Alley (1988),
L. K. Shalm et al. (2015) [5б]

Reality: Physical observables (positions, momentum, etc.) have certain values regardless of the measurements (even when nobody looks).

Locality: The effect of an event at point-A cannot propagate faster than the speed of light to another point-B.
(In special relativity, the causality is broken if information travels faster than the speed of light.)

- Alice and Bob measure the spin Z-component of their particles.
- Their results look random, but 100\% anti-correlated.

Alice	+	+	-	+	-	-	+	+	+	-	+	-
Bob	-	-	+	-	+	+	-	-	-	+	-	+
Alice x Bob	-	-	-	-	-	-	-	-	-	-	-	-

$$
\left\langle S_{z}^{\alpha} \cdot S_{z}^{\beta}\right\rangle=-1
$$

In QM, the state is:

$$
\left|\Psi^{(0,0)}\right\rangle \doteq \frac{\left|++_{z}-z\right\rangle-\left|-{ }_{z}+{ }_{z}\right\rangle}{\sqrt{2}}
$$

S_{z} of Alice's particle is in a superposition of +1 and -1 . Not real

In QM, the state is:

$$
\begin{aligned}
& \left|\Psi^{(0,0)}\right\rangle=\frac{\left.1+t_{z}-z|-|-z_{z}+_{z}\right\rangle}{\sqrt{2}} \\
& \text { the state collapses by } \\
& \text { the Alice's measurement } \\
& \text { Not local } \\
& \text { guarantees that } \\
& \text { Bob measures -1, } \\
& \text { 100\% anti-correlation }
\end{aligned}
$$

The origin of this bizarre feature is entanglement.

$$
\text { general: }|\Psi\rangle \doteq c_{11}\left|+_{z}+_{z}\right\rangle+c_{12}\left|+_{z}-_{z}\right\rangle+c_{21}\left|-_{z}+_{z}\right\rangle+c_{22}\left|-_{z}-_{z}\right\rangle
$$

separable:

$$
\left|\Psi_{\text {sep }}\right\rangle \doteq\left[c_{1}^{\alpha}\left|+_{z}\right\rangle+c_{2}^{\alpha}\left|-_{z}\right\rangle\right] \otimes\left[c_{1}^{\beta}\left|+_{z}\right\rangle+c_{2}^{\beta}\left|--_{z}\right\rangle\right]
$$

The origin of this bizarre feature is entanglement.
general: $|\Psi\rangle \doteq c_{11}\left|+_{z}+_{z}\right\rangle+c_{12}\left|+_{z}-_{z}\right\rangle+c_{21}\left|-_{z}+_{z}\right\rangle+c_{22}\left|-_{z}-_{z}\right\rangle$
separable:

$$
\left|\Psi_{\text {sep }}\right\rangle \doteq \underbrace{\left[c_{1}^{\alpha}\left|+_{z}\right\rangle+c_{2}^{\alpha}\left|--_{z}\right\rangle\right]}_{\begin{array}{c}
\text { Alice's } \\
\text { measurement }
\end{array}} \otimes \otimes \frac{\left[c_{1}^{\beta}\left|+{ }_{z}\right\rangle+c_{2}^{\beta}\left|-_{z}\right\rangle\right]}{\text { Bob's local state is intact }}
$$

The origin of this bizarre feature is entanglement.
general: $|\Psi\rangle \doteq c_{11}\left|+{ }_{z}+_{z}\right\rangle+c_{12}\left|+_{z}-_{z}\right\rangle+c_{21}\left|-_{z}+_{z}\right\rangle+c_{22}\left|-_{z}-_{z}\right\rangle$
separable:

$$
\left|\Psi_{\text {sep }}\right\rangle \doteq\left[c_{1}^{\alpha}\left|+_{z}\right\rangle+c_{2}^{\alpha}|-z\rangle\right] \otimes\left[c_{1}^{\beta}\left|+_{z}\right\rangle+c_{2}^{\beta}\left|--_{z}\right\rangle\right]
$$

entangled: $\left|\Psi_{\text {ent }}\right\rangle \geqslant\left[c_{1}^{\alpha}|+\rangle_{z}+c_{2}^{\alpha}|-\rangle_{z}\right] \otimes\left[c_{1}^{\beta}|+\rangle_{z}+c_{2}^{\beta}|-\rangle_{z}\right]$

- Assuming the reality, Alice's result is predetermined before her measurement.
- The spin components of Bob's particle are also predetermined and not affected by Alice's measurement by the locality assumption.
- Without loss of generality, we can parametrise their spin components by a set of parameters λ, which appears with the probability $P(\lambda)$ in each decay.

$$
P(\lambda) \geq 0, \quad \sum_{\lambda} P(\lambda)=1
$$

- The spin correlation is given by

$$
\left\langle s_{Z}^{\alpha} \cdot s_{Z}^{\beta}\right\rangle=\sum_{\lambda} P(\lambda) s_{Z}^{\alpha}(\lambda) s_{Z}^{\beta}(\lambda)=-1
$$

The experiment consists of 4 sessions:

1) Alice and Bob measure s_{a}^{α} and s_{b}^{β}, respectively.

Repeat the measurement many times and calculate $\left\langle s_{a} \cdot s_{b}\right\rangle$.

2) Repeat (1) for a and b^{\prime}.
3) Repeat (1) for a^{\prime} and b.
4) Repeat (1) for a^{\prime} and b^{\prime}.

Finally, we calculate: $\quad R_{\text {CHSH }} \equiv \frac{1}{2}\left|\left\langle s_{a} s_{b}\right\rangle-\left\langle s_{a} s_{b^{\prime}}\right\rangle+\left\langle s_{a^{s}} s_{b}\right\rangle+\left\langle s_{a^{3}} s_{b^{\prime}}\right\rangle\right|$

Alice

The experiment consists of 4 sessions:

1) Alice and Bob measure s_{a}^{α} and s_{b}^{β}, respectively. Repeat the measurement many times and calculate $\left\langle s_{a} \cdot s_{b}\right\rangle$.

2) Repeat (1) for a and b^{\prime}.
3) Repeat (1) for a^{\prime} and b.
4) Repeat (1) for a^{\prime} and b^{\prime}.

Finally, we calculate: $\quad R_{\text {CHSH }} \equiv \frac{1}{2}\left|\left\langle s_{a} s_{b}\right\rangle-\left\langle s_{a} s_{b^{\prime}}\right\rangle+\left\langle s_{a^{s}} s_{b}\right\rangle+\left\langle s_{a^{3}} s_{b^{\prime}}\right\rangle\right|$

Let's derive $\quad R_{\text {CHSH }} \equiv \frac{1}{2}\left|\langle a b\rangle-\left\langle a b^{\prime}\right\rangle+\left\langle a^{\prime} b\right\rangle+\left\langle a^{\prime} b^{\prime}\right\rangle\right| \leq 1$
$\left|\langle a b\rangle-\left\langle a b^{\prime}\right\rangle\right|=\left|\sum_{\lambda} a b P-\sum_{\lambda} a b^{\prime} P\right|$

$$
\left\langle s_{a}^{\alpha} \cdot s_{b}^{\beta}\right\rangle=\langle a b\rangle=\sum_{\lambda} a(\lambda) b(\lambda) P(\lambda)=\sum_{\lambda} a b P
$$

Let's derive $\quad R_{\text {CHSH }} \equiv \frac{1}{2}\left|\langle a b\rangle-\left\langle a b^{\prime}\right\rangle+\left\langle a^{\prime} b\right\rangle+\left\langle a^{\prime} b^{\prime}\right\rangle\right| \leq 1$
$\begin{aligned}\left|\langle a b\rangle-\left\langle a b^{\prime}\right\rangle\right| & =\left|\sum_{\lambda} a b P-\sum_{\lambda} a b^{\prime} P\right| \\ & =\left|\sum_{\lambda}\left[a b\left(1 \pm a^{\prime} b^{\prime}\right) P-a b^{\prime}\left(1 \pm a^{\prime} b\right) P\right]\right|\end{aligned}$

$$
\left\langle s_{a}^{\alpha} \cdot s_{b}^{\beta}\right\rangle=\langle a b\rangle=\sum_{\lambda} a(\lambda) b(\lambda) P(\lambda)=\sum_{\lambda} a b P
$$

Let's derive $\quad R_{\text {CHSH }} \equiv \frac{1}{2}\left|\langle a b\rangle-\left\langle a b^{\prime}\right\rangle+\left\langle a^{\prime} b\right\rangle+\left\langle a^{\prime} b^{\prime}\right\rangle\right| \leq 1$

$$
\begin{aligned}
\left|\langle a b\rangle-\left\langle a b^{\prime}\right\rangle\right| & =\left|\sum_{\lambda} a b P-\sum_{\lambda} a b^{\prime} P\right| \\
& =\left|\sum_{\lambda}\left[a b\left(1 \pm a^{\prime} b^{\prime}\right) P-a b^{\prime}\left(1 \pm a^{\prime} b\right) P\right]\right| \\
& \leq \sum_{\lambda}\left[|a b|\left|1 \pm a^{\prime} b^{\prime}\right| P+\left|a b^{\prime}\right| \mid 1 \pm a^{\prime} b^{\prime} P-\left(\pm a b a^{\prime} b^{\prime} P\right)=0\right.
\end{aligned}
$$

$$
\left\langle s_{a}^{\alpha} \cdot s_{b}^{\beta}\right\rangle=\langle a b\rangle=\sum_{\lambda} a(\lambda) b(\lambda) P(\lambda)=\sum_{\lambda} a b P
$$

Let's derive $\quad R_{\text {CHSH }} \equiv \frac{1}{2}\left|\langle a b\rangle-\left\langle a b^{\prime}\right\rangle+\left\langle a^{\prime} b\right\rangle+\left\langle a^{\prime} b^{\prime}\right\rangle\right| \leq 1$

$$
\begin{aligned}
\left|\langle a b\rangle-\left\langle a b^{\prime}\right\rangle\right| & =\left|\sum_{\lambda} a b P-\sum_{\lambda} a b^{\prime} P\right| \\
& =\left|\sum_{\lambda}\left[a b\left(1 \pm a^{\prime} b^{\prime}\right) P-a b^{\prime}\left(1 \pm a^{\prime} b\right) P\right]\right| \\
& \leq \sum_{\lambda}\left[|a b|\left|1 \pm a^{\prime} b^{\prime}\right| P+\left|a b^{\prime}\right|\left|1 \pm a^{\prime} b\right| P\right] \\
& =\sum_{\lambda}\left[\left(1 \pm a^{\prime} b^{\prime}\right) P+\left(1 \pm a^{\prime} b\right) P\right] \\
& =2 \pm\left(\left\langle a^{\prime} b^{\prime}\right\rangle+\left\langle a^{\prime} b\right\rangle\right)
\end{aligned}
$$

$$
\left\langle s_{a}^{\alpha} \cdot s_{b}^{\beta}\right\rangle=\langle a b\rangle=\sum_{\lambda} a(\lambda) b(\lambda) P(\lambda)=\sum_{\lambda} a b P
$$

Let's derive $\quad R_{\text {CHSH }} \equiv \frac{1}{2}\left|\langle a b\rangle-\left\langle a b^{\prime}\right\rangle+\left\langle a^{\prime} b\right\rangle+\left\langle a^{\prime} b^{\prime}\right\rangle\right| \leq 1$

$$
\begin{aligned}
&\left|\langle a b\rangle-\left\langle a b^{\prime}\right\rangle\right|=\left|\sum_{\lambda} a b P-\sum_{\lambda} a b^{\prime} P\right| \\
&=\left|\sum_{\lambda}\left[a b\left(1 \pm a^{\prime} b^{\prime}\right) P-a b^{\prime}\left(1 \pm a^{\prime} b\right) P\right]\right| \\
& \leq \sum_{\lambda}\left[|a b|\left|1 \pm a^{\prime} b^{\prime}\right| P+\left|a b^{\prime}\right|\left|1 \pm a^{\prime} b\right| P\right] \\
&=\sum_{\lambda}\left[\left(1 \pm a^{\prime} b^{\prime}\right) P+\left(1 \pm a^{\prime} b\right) P\right] \\
&=2 \pm\left(\left\langle a^{\prime} b^{\prime}\right\rangle+\left\langle a^{\prime} b\right\rangle\right) \\
& \tilde{R}_{\text {CHSH }} \equiv \frac{1}{2}\left(\mid\langle a b\rangle-\left\langle a b^{\prime} b^{\prime} P\right|+\left|\left\langle a^{\prime} b\right\rangle+\left\langle a^{\prime} b^{\prime}\right\rangle\right|\right) \leq 1 \\
& \max _{\left(a, b, a^{\prime}, b^{\prime}\right)} R_{\text {CHSH }}=\max _{\left(a, b, a^{\prime} b^{\prime}\right)} \tilde{R}_{\text {CHSH }}
\end{aligned}
$$

In QM, the state is: $\quad\left|\Psi^{(0,0)}\right\rangle \doteq \frac{\left|+t_{z}-_{z}\right\rangle-\left|-_{z}+_{z}\right\rangle}{\sqrt{2}}$

The spin correlation is: $\quad\left\langle s_{a} s_{b}\right\rangle=\left\langle\Psi^{(0,0)}\right|\left(\mathbf{s}^{\alpha} \cdot \hat{\mathbf{a}}\right)\left(\mathbf{s}^{\beta} \cdot \hat{\mathbf{b}}\right)\left|\Psi^{(0,0)}\right\rangle=(\hat{\mathbf{a}} \cdot \hat{\mathbf{b}})$

$$
\begin{aligned}
R_{\text {CHSH }} & =\frac{1}{2}\left|\left\langle s_{a} s_{b}\right\rangle-\left\langle s_{a} s_{b}\right\rangle+\left\langle s_{a} s_{b}\right\rangle+\left\langle s_{a} s_{b^{\prime}}\right\rangle\right| \\
& =\frac{1}{2}\left|(\hat{\mathbf{a}} \cdot \hat{\mathbf{b}})-\left(\hat{\mathrm{a}} \cdot \hat{\mathrm{~b}}^{\prime}\right)+\left(\hat{\mathrm{a}}^{\prime} \cdot \hat{\mathbf{b}}\right)+\left(\hat{\mathrm{a}}^{\prime} \cdot \hat{\mathrm{b}}^{\prime}\right)\right|
\end{aligned}
$$

In QM, the state is: $\quad\left|\Psi^{(0,0)}\right\rangle \doteq \frac{\left|++_{z}-z_{z}\right\rangle-\left|--_{z}\right\rangle}{\sqrt{2}}$

The spin correlation is: $\quad\left\langle s_{a} s_{b}\right\rangle=\left\langle\Psi^{(0,0)}\right|\left(\mathbf{s}^{\alpha} \cdot \hat{\mathbf{a}}\right)\left(\mathbf{s}^{\beta} \cdot \hat{\mathbf{b}}\right)\left|\Psi^{(0,0)}\right\rangle=(\hat{\mathbf{a}} \cdot \hat{\mathbf{b}})$

\% Violation of Bell inequalities has been observed in low energy experiments:

- Entangled photon pairs (from decays of Calcium atoms)

Clauser, Horne, Shimony, Holt (1969), Freedman and Clauser (1972), A. Aspect et. al. (1981, 1982), Y. H. Shih, C. O. Alley (1988), L. K. Shalm et al. (2015) [5б]

- Entangled proton pairs (from decays of ${ }^{2} \mathrm{He}$)
M. M. Lamehi-Rachti, W. Mitting (1972), H. Sakai (2006)
- $K^{0} \overline{K^{0}}, B^{0} \overline{B^{0}}$ flavour oscillation

Bell inequality and entanglement have not been tested at high energy regime $\mathrm{E} \sim \mathrm{TeV}$

Can we test Bell inequality and entanglement at high energy colliders?

- Entanglement in $p p \rightarrow t \bar{t} @$ LHC Y. Afik, J. R. M. de Nova (2020)
M. Fabbrichesi, R. Floreanini, G. Panizzo (2021)
- Bell inequality test in $p p \rightarrow t \bar{t} @$ LHC
C. Severi, C. D. Boschi, F. Maltoni, M. Sioli (2021)
J. A. Aguilar-Saavedra, J. A. Casas (2022)
- Bell inequality test in $H \rightarrow W W^{*} @$ LHC A. J. Barr (2021)
- Quantum property test in $H \rightarrow \tau^{+} \tau^{-}$@ high energy $e^{+} e^{-}$colliders

Density operator

probability of having $\left|\Psi_{1}\right\rangle$

- For a statistical ensemble $\left\{\left\{p_{1}:\left|\Psi_{1}\right\rangle\right\},\left\{p_{2}:\left|\Psi_{2}\right\rangle\right\},\left\{p_{3}:\left|\Psi_{3}\right\rangle\right\}, \cdots\right\}$, we define the density operator/matrix

$$
\begin{array}{rr}
\qquad \hat{\rho} \equiv \sum_{k} p_{k}\left|\Psi_{k}\right\rangle\left\langle\Psi_{k}\right| & \rho_{a b} \equiv\left\langle e_{a}\right| \hat{\rho}\left|e_{b}\right\rangle \\
\sum_{k} p_{k}=1 \\
\text { - Probability and expectation values: } & \left\langle e_{a} \mid e_{b}\right\rangle=\delta_{a b}
\end{array}
$$

$$
\int \hat{A}|a\rangle=a|a\rangle
$$

$P(a \mid \hat{A}, \hat{\rho})=\langle a| \rho|a\rangle \quad$ Probability for outcome a when \hat{A} is measured on the state $\hat{\rho}$

$$
\langle\hat{A}\rangle_{\rho}=\operatorname{Tr}[\hat{A} \hat{\rho}] \quad \text { Expectation value for } \hat{A} \text { on the state } \hat{\rho}
$$

Spin 1/2 biparticle system

- The spin system of α and β particles has 4 independent bases:

$$
\left(\left|e_{1}\right\rangle,\left|e_{2}\right\rangle,\left|e_{3}\right\rangle,\left|e_{4}\right\rangle\right)=(|++\rangle,|+-\rangle,|-+\rangle,|--\rangle)
$$

- ==> $\rho_{a b}$ is a 4×4 matrix (hermitian, $\mathrm{Tr}=1$, non-negative).

It can be expanded as

$$
\rho=\frac{1}{4}\left(\mathbf{1}_{4}+B_{i} \cdot \sigma_{i} \otimes \mathbf{1}+\bar{B}_{i} \cdot \mathbf{1} \otimes \sigma_{i}+C_{i j} \cdot \sigma_{i} \otimes \sigma_{j}\right)
$$

$$
\begin{aligned}
& \begin{array}{c}
3 \times 3 \text { matrix } \\
\downarrow \\
B_{i}, \bar{B}_{i}, C_{i j} \in \mathbb{R}
\end{array}
\end{aligned}
$$

- For the spin operators \hat{S}^{α} and \hat{S}^{β},
spin-spin correlation

$$
\left\langle\hat{s}_{i}^{\alpha}\right\rangle=\operatorname{Tr}\left[\hat{s}_{i}^{\alpha} \hat{\rho}\right]=B_{i} \quad\left\langle\hat{s}_{i}^{\beta}\right\rangle=\operatorname{Tr}\left[\hat{s}_{i}^{\beta} \hat{\rho}\right]=\bar{B}_{i}
$$

$$
\left\langle\hat{s}_{i}^{\alpha} \hat{S}_{j}^{\beta}\right\rangle=\operatorname{Tr}\left[\hat{s}_{i}^{\alpha} \hat{S}_{j}^{\beta} \hat{\rho}\right]=C_{i j}
$$

$$
\begin{array}{r}
H \rightarrow \tau^{+} \tau^{-} \\
\mathscr{L}_{\mathrm{int}}=-\frac{m_{\tau}}{v_{\mathrm{SM}}} \kappa H \bar{\psi}_{\tau}\left(\cos \delta+i \gamma_{5} \sin \delta\right) \psi_{\tau}
\end{array}
$$

$$
\mathbf{S M}:(\kappa, \delta)=(1,0)
$$

$$
\begin{gathered}
H \rightarrow \tau^{+} \tau^{-} \\
\mathscr{L}_{\mathrm{int}}=-\frac{m_{\tau}}{v_{\mathrm{SM}}} \kappa H \bar{\psi}_{\tau}\left(\cos \delta+i \gamma_{5} \sin \delta\right) \psi_{\tau} \quad \text { SM: }(\kappa, \delta)=(1,0)
\end{gathered}
$$

$$
\rho_{m n, \bar{m} \bar{n}}=\frac{\mathcal{M}^{* n \bar{n}} \mathcal{M}^{m \bar{m}}}{\sum_{m \bar{m}}\left|\mathcal{M}^{m \bar{m}}\right|^{2}} \quad \rho_{m n, \bar{m} \bar{n}}=\frac{1}{2}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & e^{-i 2 \delta} & 0 \\
0 & e^{i 2 \delta} & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$H \rightarrow \tau^{+} \tau^{-}$

$$
\mathscr{L}_{\mathrm{int}}=-\frac{m_{\tau}}{v_{\mathrm{SM}}} \kappa H \bar{\psi}_{\tau}\left(\cos \delta+i \gamma_{5} \sin \delta\right) \psi_{\tau}
$$

$$
\mathbf{S M}:(\kappa, \delta)=(1,0)
$$

$\rho_{m n, \bar{m} \bar{n}}=\frac{\mathcal{M}^{* n \bar{n}} \mathcal{M}^{m \bar{m}}}{\sum_{m \bar{m}}\left|\mathcal{M}^{m \bar{m}}\right|^{2}}$

$$
\rho_{m n, \bar{m} \bar{n}}=\frac{1}{2}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & e^{-i 2 \delta} & 0 \\
0 & e^{i 2 \delta} & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\begin{array}{r}
\rho=\frac{1}{4}\left(\mathbf{1}_{4}+B_{i} \cdot \sigma_{i} \otimes \mathbf{1}\right. \\
\left.\bar{B}_{i} \cdot \mathbf{1} \otimes \sigma_{i}+C_{i j} \cdot \sigma_{i} \otimes \sigma_{j}\right)
\end{array}
$$

$\mathcal{M}^{m \bar{m}}=c \bar{u}^{m}(p)\left(\cos \delta+i \gamma_{5} \sin \delta\right) v^{\bar{m}}(\bar{p})$

$$
B_{i}=\bar{B}_{i}=0
$$

$$
C_{i j}=\left(\begin{array}{ccc}
\cos 2 \delta & \sin 2 \delta & 0 \\
-\sin 2 \delta & \cos 2 \delta & 0 \\
0 & 0 & -1
\end{array}\right)
$$

$$
H \rightarrow \tau^{+} \tau^{-}
$$

$$
\mathscr{L}_{\mathrm{int}}=-\frac{m_{\tau}}{v_{\mathrm{SM}}} \kappa H \bar{\psi}_{\tau}\left(\cos \delta+i \gamma_{5} \sin \delta\right) \psi_{\tau}
$$

SM: $(\kappa, \delta)=(1,0)$
$\rho_{m n, \bar{m} \bar{n}}=\frac{\mathcal{M}^{* n \bar{n}} \mathcal{M}^{m \bar{n}}}{\sum_{m \bar{m}}\left|\mathcal{M}^{m \bar{m}}\right|^{2}}$
$\mathcal{M}^{m \bar{m}}=c \bar{u}^{m}(p)\left(\cos \delta+i \gamma_{5} \sin \delta\right) v^{\bar{m}}(\bar{p})$

$$
\rho_{m n, \bar{m} \bar{n}}=\frac{1}{2}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & e^{-i 2 \delta} & 0 \\
0 & e^{i 2 \delta} & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\begin{gathered}
\rho=\frac{1}{4}\left(\mathbf{1}_{4}+B_{i} \cdot \sigma_{i} \otimes \mathbf{1}\right. \\
\left.\bar{B}_{i} \cdot \mathbf{1} \otimes \sigma_{i}+C_{i j} \cdot \sigma_{i} \otimes \sigma_{j}\right)
\end{gathered}
$$

$$
\left|\Psi_{H \rightarrow \tau \tau}(\delta)\right\rangle \propto|+-\rangle+e^{i 2 \delta}|-+\rangle
$$

$$
B_{i}=\bar{B}_{i}=0
$$

$$
\left|\Psi^{(1, m)}\right\rangle \propto\left(\begin{array}{c}
\delta=0 \\
\frac{1++\rangle^{(C P}}{|+-\rangle+|-+\rangle} \\
|--\rangle
\end{array}\right)^{\text {even })}\left|\Psi^{(0,0)}\right\rangle \propto \begin{array}{r}
\delta=\pi / 2(\mathrm{CP} \text { odd) } \\
|+-\rangle-|-+\rangle
\end{array}
$$

Parity: $P=\left(\eta_{f} \eta_{\bar{f}}\right) \cdot(-1)^{l}$ with $\eta_{f} \eta_{\bar{f}}=-1$:

$$
J^{P}= \begin{cases}0^{+} \Longrightarrow & l=s=1 \\ 0^{-} \Longrightarrow & l=s=0\end{cases}
$$

Entanglement

- If the state is separable (not entangled),

$$
\rho=\sum_{k} p_{k} \rho_{k}^{\alpha} \otimes \rho_{k}^{\beta}
$$

then, a modified matrix by the partial transpose

$$
\begin{aligned}
& 0 \leq p_{k} \leq 1 \\
& \sum_{k} p_{k}=1
\end{aligned}
$$

$$
\rho^{T_{\beta}} \equiv \sum_{k} p_{k} \rho_{k}^{\alpha} \otimes\left[\rho_{k}^{\beta}\right]^{T}
$$

is also a physical density matrix, i.e. $\operatorname{Tr}=1$ and non-negative.

- For biparticle systems, entanglement $\Longleftrightarrow \rho^{T_{\beta}}$ to be non-positive.
- A simple sufficient condition for entanglement is:

$$
\begin{array}{r}
E \equiv C_{11}+C_{22}-C_{33}>1 \\
\left(E=2 \cos 2 \delta+1 \text { for } H \rightarrow \tau^{+} \tau^{-}\right) \\
\left(E=3 \text { (maximally entangled) for } H \rightarrow \tau^{+} \tau^{-}\right. \text {in SM) }
\end{array}
$$

- In $\tau^{ \pm} \rightarrow \pi^{ \pm} \nu$, the direction of $\pi^{ \pm},\left(\vec{\pi}^{ \pm}\right)$, measured at the rest frame of $\tau^{ \pm}$is

$$
\frac{d \Gamma}{d \Omega} \propto 1+\stackrel{\text { spin analyzing power }[-1,1]}{\downarrow}{ }_{\tau \rightarrow \pi \nu} \cdot\left(\vec{\pi}^{ \pm} \cdot \mathbf{s}\right)
$$

- $\vec{\pi}^{ \pm}$is a unit vector pointing to the direction of $\pi^{ \pm}$measured at the rest frame of $\tau^{ \pm}$
- \mathbf{S} is the spin of $\tau^{ \pm}$at its rest frame
- In $\tau^{ \pm} \rightarrow \pi^{ \pm} \nu$, the direction of $\pi^{ \pm},\left(\vec{\pi}^{ \pm}\right)$, measured at the rest frame of $\tau^{ \pm}$is

- $\vec{\pi}^{ \pm}$is a unit vector pointing to the direction of $\pi^{ \pm}$measured at the rest frame of $\tau^{ \pm}$
- \mathbf{S} is the spin of $\tau^{ \pm}$at its rest frame

$$
\left\langle\hat{s}_{i}^{\left(\tau^{-}\right)} \hat{s}_{j}^{\left(\tau^{+}\right)}\right\rangle=-9 \cdot\left\langle\left(\vec{\pi}^{-} \cdot \mathbf{e}_{i}\right)\left(\vec{\pi}^{+} \cdot \mathbf{e}_{j}\right)\right\rangle
$$

- For the unit vectors ($\hat{\mathbf{a}}, \hat{a}^{\prime}, \hat{\mathbf{b}}, \hat{b}^{\prime}$), RHS of the Bell inequality can be measured as

$$
\begin{aligned}
& R_{\text {CHSH }} \equiv \frac{1}{2}\left|\left\langle s_{a} s_{b}\right\rangle-\left\langle s_{a} s_{b^{\prime}}\right\rangle+\left\langle s_{a^{\prime}} s_{b}\right\rangle+\left\langle s_{a^{\prime}} s_{b^{\prime}}\right\rangle\right| \\
& \quad=\frac{9}{2}\left|\left\langle\left(\vec{\pi}^{-} \cdot \hat{\mathbf{a}}\right)\left(\vec{\pi}^{+} \cdot \hat{\mathbf{b}}\right)\right\rangle-\left\langle\left(\vec{\pi}^{-} \cdot \hat{\mathbf{a}}\right)\left(\vec{\pi}^{+} \cdot \hat{\mathrm{b}}^{\prime}\right)\right\rangle+\left\langle\left(\vec{\pi}^{-} \cdot \hat{\mathrm{a}}\right)\left(\vec{\pi}^{+} \cdot \hat{\mathbf{b}}\right)\right\rangle+\left\langle\left(\vec{\pi}^{-} \cdot \hat{\mathrm{a}}\right)\left(\vec{\pi}^{+} \cdot \hat{\mathrm{b}}\right)\right\rangle\right|
\end{aligned}
$$

$$
\left\langle\hat{s}_{i}^{\left(\tau^{-}\right)} \hat{s}_{j}^{\left(\tau^{+}\right)}\right\rangle=-9 \cdot\left\langle\left(\vec{\pi}^{-} \cdot \mathbf{e}_{i}\right)\left(\vec{\pi}^{+} \cdot \mathbf{e}_{j}\right)\right\rangle
$$

- For the unit vectors ($\hat{\mathbf{a}}, \hat{a}^{\prime}, \hat{\mathbf{b}}, \hat{\mathbf{b}}^{\prime}$), RHS of the Bell inequality can be measured as
$R_{\text {CHSH }} \equiv \frac{1}{2}\left|\left\langle s_{a} s_{b}\right\rangle-\left\langle s_{a} s_{b^{\prime}}\right\rangle+\left\langle s_{a} s_{b}\right\rangle+\left\langle s_{a} s_{b^{\prime}}\right\rangle\right|$

$$
=\frac{9}{2}\left|\left\langle\left(\vec{\pi}^{-} \cdot \hat{\mathbf{a}}\right)\left(\vec{\pi}^{+} \cdot \hat{\mathbf{b}}\right)\right\rangle-\left\langle\left(\vec{\pi}^{-} \cdot \hat{\mathrm{a}}\right)\left(\vec{\pi}^{+} \cdot \hat{\mathrm{b}}^{\prime}\right)\right\rangle+\left\langle\left(\vec{\pi}^{-} \cdot \hat{\mathrm{a}}^{\prime}\right)\left(\vec{\pi}^{+} \cdot \hat{\mathbf{b}}\right)\right\rangle+\left\langle\left(\vec{\pi}^{-} \cdot \hat{\mathrm{a}}^{\prime}\right)\left(\vec{\pi}^{+} \cdot \hat{\mathrm{b}}^{\prime}\right)\right\rangle\right|
$$

- We fix ($\left.\hat{\mathbf{a}}, \hat{a}^{\prime}, \hat{\mathbf{b}}, \hat{b}^{\prime}\right)$ so that $\mathrm{R}_{\text {CHSH }}$ is maximised.

$$
\begin{array}{ll}
\hat{\mathbf{a}}=\mathbf{r} & \hat{\mathbf{b}}=\frac{1}{\sqrt{2}}(\mathbf{n}+\mathbf{r}) \\
\hat{\mathrm{a}}^{\prime}=\mathbf{n} & \hat{b}^{\prime}=\frac{1}{\sqrt{2}}(\mathbf{n}-\mathbf{r})
\end{array}
$$

Separable state (compliment of entangled state):

$$
P(a, b \mid A, B)=\sum_{\lambda} p_{\lambda}\langle a| \rho_{\lambda}^{\alpha}|a\rangle \cdot\langle b| \rho_{\lambda}^{\beta}|b\rangle \longleftarrow \rho=\sum_{\lambda} p_{\lambda} \rho_{k}^{\alpha} \otimes \rho_{\lambda}^{\beta}
$$

$$
\hat{A}|a\rangle=a|a\rangle
$$

$P(a \mid \hat{A}, \hat{\rho})=\langle a| \rho|a\rangle \quad$ Probability for outcome a when \hat{A} is measured on the state $\hat{\rho}$

Separable state (compliment of entangled state):

$$
P(a, b \mid A, B)=\sum_{\lambda} p_{\lambda}\langle a| \rho_{\lambda}^{\alpha}|a\rangle \cdot\langle b| \rho_{\lambda}^{\beta}|b\rangle \longleftarrow \rho=\sum_{\lambda} p_{\lambda} \rho_{k}^{\alpha} \otimes \rho_{\lambda}^{\beta}
$$

Hidden Variable state (complement of Bell nonlocal state):

Separable state (compliment of entangled state):

$$
P(a, b \mid A, B)=\sum_{\lambda} p_{\lambda}\langle a| \rho_{\lambda}^{\alpha}|a\rangle \cdot\langle b| \rho_{\lambda}^{\beta}|b\rangle \longleftarrow \rho=\sum_{\lambda} p_{\lambda} \rho_{k}^{\alpha} \otimes \rho_{\lambda}^{\beta}
$$

Un-steerable state (not-steerable by Alice):

$$
P(a, b \mid A, B)=\sum_{\lambda} p_{\lambda} P_{\alpha}(a \mid A, \lambda) \cdot\langle b| \rho_{\lambda}^{\beta}|b\rangle
$$

[Jones, Wiseman, Doherty 2007]
If this description is possible, Alice cannot influence ('steer") Bob’s local state

Hidden Variable state (complement of Bell nonlocal state):
$P(a, b \mid A, B)=\sum_{\lambda} p_{\lambda} P_{\alpha}(a \mid A, \lambda) \cdot P_{\beta}(b \mid B, \lambda)$
arbitrary conditional probabilities

Separable state (compliment of entangled state):

$$
P(a, b \mid A, B)=\sum_{\lambda} p_{\lambda}\langle a| \rho_{\lambda}^{\alpha}|a\rangle \cdot\langle b| \rho_{\lambda}^{\beta}|b\rangle \longleftarrow \rho=\sum_{\lambda} p_{\lambda} \rho_{k}^{\alpha} \otimes \rho_{\lambda}^{\beta}
$$

Un-steerable state (not-steerable by Alice):

$$
P(a, b \mid A, B)=\sum_{\lambda} p_{\lambda} P_{\alpha}(a \mid A, \lambda) \cdot\langle b| \rho_{\lambda}^{\beta}|b\rangle
$$

[Jones, Wiseman, Doherty 2007]
If this description is possible, Alice cannot influence ("steer") Bob's local state

Hidden Variable state (complement of Bell nonlocal state):

$$
P(a, b \mid A, B)=\sum_{\lambda} p_{\lambda} P_{\alpha}(a \mid A, \lambda) \cdot P_{\beta}(b \mid B, \lambda)
$$

Steerability

- For unpolarised cases, $\left\langle\hat{s}_{i}^{A}\right\rangle=\left\langle\hat{s}_{i}^{B}\right\rangle=0$, a necessary and sufficient condition for steerability is given by: [Jevtic, Hall, Anderson, Zwierz, Wiseman 2015]

$$
\mathcal{S}[\rho] \equiv \frac{1}{2 \pi} \int d \Omega_{\mathbf{n}} \sqrt{\mathbf{n}^{T} C^{T} C \mathbf{n}} \quad \mathcal{S}[\rho]>1
$$

- $\ln H \rightarrow \tau^{+} \tau^{-}$,
$C_{i j}=\left(\begin{array}{ccc}\cos 2 \delta & \sin 2 \delta & 0 \\ -\sin 2 \delta & \cos 2 \delta & 0 \\ 0 & 0 & -1\end{array}\right) \Rightarrow C^{T} C=\mathbf{1} \Rightarrow \mathcal{S}[\rho]=2 \quad$ (independent of δ)

Entanglement: [Peres-Horodecki 1996-7]

$$
E>1 \quad E \equiv C_{11}+C_{22}-C_{33}
$$

$$
E\left(H \rightarrow \tau^{+} \tau^{-}\right)=2 \cos 2 \delta+1
$$

Steerability: [Jevtic, Hall, Anderson, Zwierz, Wiseman 2015]

$$
\left.\mathcal{S}[\rho]>1 \quad \text { (assuming } B_{i}=\bar{B}_{i}=0\right) \quad \mathcal{S}[\rho] \equiv \frac{1}{2 \pi} \int d \Omega_{\mathbf{n}} \sqrt{\mathbf{n}^{T} C^{T} C \mathbf{n}}
$$

$$
\mathcal{S}[\rho]\left(H \rightarrow \tau^{+} \tau^{-}\right)=2
$$

Bell-nonlocality: [Clauser, Horne, Shimony, Holt, 1969]

$$
R_{\mathrm{CHSH}} \equiv \frac{1}{2}\left|\left\langle s_{a} s_{b}\right\rangle-\left\langle s_{a} s_{b}\right\rangle+\left\langle s_{a} s_{b}\right\rangle+\left\langle s_{a} s_{b}\right\rangle\right|>1
$$

$R_{\text {CHSH }}\left(H \rightarrow \tau^{+} \tau^{-}\right)=\sqrt{2}$

$$
\left\langle s_{i} s_{j}\right\rangle=C_{i j}=-9 \cdot\left\langle\left(\vec{\pi}^{-} \cdot \mathbf{e}_{i}\right)\left(\vec{\pi}^{+} \cdot \mathbf{e}_{j}\right)\right\rangle
$$

$H \rightarrow \tau^{+} \tau^{-} @$ lepton colliders

- Background $Z / \gamma \rightarrow \tau^{+} \tau^{-}$is much smaller for lepton colliders.
- We need to reconstruct each τ rest frame to measure $\vec{\pi}^{ \pm}$. This is challenging at hadron colliders since partonic CoM energy is unknown for each event.

Simulation

$$
e^{+} e^{-} \rightarrow Z+\left(Z^{*} / \gamma^{*}\right) \rightarrow f \bar{f}+\tau^{+} \tau^{-}
$$

	ILC	FCC-ee
energy (GeV)	250	240
luminosity $\left(\mathrm{ab}^{-1}\right)$	3	5
beam resolution $e^{+}(\%)$	0.18	0.83×10^{-4}
beam resolution $e^{-}(\%)$	0.27	0.83×10^{-4}
$\sigma\left(e^{+} e^{-} \rightarrow H Z\right)(\mathrm{fb})$	240.1	240.3
$\#$ of signal $(\sigma \cdot \mathrm{BR} \cdot L \cdot \epsilon)$	385	663
τ^{-}of background $(\sigma \cdot \mathrm{BR} \cdot L \cdot \epsilon)$	20	36

- Generate the SM events $(\kappa, \delta)=(1,0)$ with MadGraph5.

$$
e^{+} e^{-} \rightarrow H Z, \quad Z \rightarrow f \bar{f}, \quad H \rightarrow \tau^{+} \tau^{-}, \quad \tau^{ \pm} \rightarrow \nu \pi^{ \pm}
$$

- incorporate the detector effect by smearing energies of visible particles with

$$
\begin{gathered}
E^{\text {true }} \rightarrow E^{\mathrm{obs}}=\left(1+\sigma_{E} \cdot \omega\right) \cdot E^{\text {true }} \quad \sigma_{E}=0.03 \\
\text { random number from the normal distribution }
\end{gathered}
$$

- Event selection: $\quad\left|M_{\text {recoil }}-125 \mathrm{GeV}\right|<5 \mathrm{GeV} \quad M_{\text {recoil }} \equiv\left(P_{e^{+} e^{-}}^{\mu}-P_{Z}^{\mu}\right)^{2}$
- 100 pseudo-experiments to estimate the statistical uncertainties
- To determine the tau momenta, we have to reconstruct the unobserved neutrino momenta $\left(p_{x}^{\nu}, p_{y}^{\nu}, p_{z}^{\nu}\right),\left(p_{x}^{\bar{\nu}}, p_{y}^{\nu}, p_{z}^{\bar{\nu}}\right)$.

- To determine the tau momenta, we have to reconstruct the unobserved neutrino momenta $\left(p_{x}^{\nu}, p_{y}^{\nu}, p_{z}^{\nu}\right),\left(p_{x}^{\bar{\nu}}, p_{y}^{\bar{\nu}}, p_{z}^{\bar{\nu}}\right)$.
- 6 unknowns can be constrained by 2 massshell conditions and 4 energy-momentum conservation.

$$
\begin{aligned}
& m_{\tau}^{2}=\left(p_{\tau^{+}}\right)^{2}=\left(p_{\pi^{+}}+p_{\bar{\nu}}\right)^{2} \\
& m_{\tau}^{2}=\left(p_{\tau^{-}}\right)^{2}=\left(p_{\pi^{-}}+p_{\nu}\right)^{2} \\
& \left(p_{e e}-p_{Z}\right)^{\mu}=p_{H}^{\mu}=\left[\left(p_{\pi^{-}}+p_{\nu}\right)+\left(p_{\pi^{+}}+p_{\bar{\nu}}\right)\right]^{\mu}
\end{aligned}
$$

We have 2-fold solutions.

Result 1

| | ILC | FCC-ee |
| :---: | :---: | :---: | :---: |
| | $\left(\begin{array}{ccc}-0.600 \pm 0.210 & 0.003 \pm 0.125 & 0.020 \pm 0.149 \\ 0.003 \pm 0.125 & -0.494 \pm 0.190 & 0.007 \pm 0.128 \\ 0.048 \pm 0.174 & 0.0007 \pm 0.156 & 0.487 \pm 0.193\end{array}\right)$ | $\left(\begin{array}{ccc}-0.559 \pm 0.143 & -0.010 \pm 0.095 & -0.014 \pm 0.122 \\ -0.010 \pm 0.095 & -0.494 \pm 0.139 & -0.002 \pm 0.111 \\ 0.012 \pm 0.124 & 0.020 \pm 0.105 & 0.434 \pm 0.134\end{array}\right)$ |
| C_{k} | -1.057 ± 0.385 | -0.977 ± 0.264 |
| $\mathcal{C}[\rho]$ | 0.030 ± 0.071 | 0.005 ± 0.023 |
| $\mathcal{S}[\rho]$ | 1.148 ± 0.210 | 1.046 ± 0.163 |
| $R_{\text {CHSH }}^{*}$ | 0.769 ± 0.189 | 0.703 ± 0.134 |

SM values: $\quad C_{i j}^{\mathrm{SM}}=\left(\begin{array}{lll}1 & & \\ & 1 & \\ & & -1\end{array}\right)$

$$
\begin{aligned}
E_{\mathrm{SM}}[\rho] & =3 \\
\mathcal{S}_{\mathrm{SM}}[\rho] & =2 \\
R_{\mathrm{CHSH}}^{\mathrm{SM}} & =\sqrt{2} \simeq 1.414
\end{aligned}
$$

Entanglement $\Longrightarrow E>1$ Steerablity $\Longrightarrow \mathcal{S}[\rho]>1$

Bell-nonlocal $\Longrightarrow R_{\text {CHSH }}>1$

$E^{\text {true }} \rightarrow E^{\text {obs }}=\left(1+\sigma_{E} \cdot \omega\right) \cdot E^{\text {true }}$

Use impact parameter information

- We use the information of impact parameter $\vec{b}_{ \pm}$ measurement of $\pi^{ \pm}$to "correct" the observed energies of $\tau^{ \pm}$and Z decay products
- We check whether the reconstructed τ momenta are consistent with the measured impact parameters.
- We construct the likelihood function and search for the most likely τ momenta.

$$
\vec{b}_{ \pm}^{\text {reco }}\left(\mathbf{e}_{\tau^{ \pm}}\right)=\left|\vec{b}_{ \pm}\right| \cdot\left[\mathbf{e}_{\tau^{ \pm}} \cdot \sin ^{-1} \Theta_{ \pm}-\mathbf{e}_{\pi^{ \pm}} \cdot \tan ^{-1} \Theta_{ \pm}\right]
$$

$E_{\alpha}\left(\delta_{\alpha}\right)=\left(1+\sigma_{\alpha}^{E} \cdot \delta_{\alpha}\right) \cdot E_{\alpha}^{\text {obs }} \quad\left(\alpha=\pi^{+}, \pi^{-}, x, \bar{x}\right)$
$\vec{\Delta}_{b_{ \pm}}^{i_{s}}(\boldsymbol{\delta}) \equiv \vec{b}_{ \pm}-\vec{b}_{ \pm}^{\text {reco }}\left(\mathbf{e}_{\tau^{+}}^{i_{s}}(\boldsymbol{\delta})\right) \quad$ (2-fold solutions: $\left.i_{s}=1,2\right)$
$L_{ \pm}^{i_{s}}(\boldsymbol{\delta})=\frac{\left[\Delta_{b_{ \pm}}^{i_{s}}(\boldsymbol{\delta})\right]_{x}^{2}+\left[\Delta_{b_{ \pm}}^{i_{s}}(\boldsymbol{\delta})\right]_{y}^{2}}{\sigma_{b_{T}}^{2}}+\frac{\left[\Delta_{b_{ \pm}}^{i_{s}}(\boldsymbol{\delta})\right]_{z}^{2}}{\sigma_{b_{z}}^{2}} \quad\left(\alpha=\pi^{+}, \pi^{-}, x, \bar{x}\right) \quad\left(\sigma_{b_{T}}=2 \mu m, \sigma_{b_{z}}=5 \mu m\right)$
$L^{i_{s}}(\boldsymbol{\delta})=L_{+}^{i_{s}}(\boldsymbol{\delta})+L_{-}^{i_{s}}(\boldsymbol{\delta})+\delta_{\pi^{+}}^{2}+\delta_{\pi^{-}}^{2}+\delta_{x}^{2}+\delta_{\bar{x}}^{2} . \leftarrow$ We choose δ and i_{S} to minimises this.

Result 2

	ILC		FCC-ee
	$\left(\begin{array}{cccc}0.830 \pm 0.176 & 0.020 \pm 0.146 & -0.019 \pm 0.159 \\ -0.034 \pm 0.160 & 0.981 \pm 0.1527 & -0.029 \pm 0.156 \\ -0.001 \pm 0.158 & -0.021 \pm 0.155 & -0.729 \pm 0.140\end{array}\right)$	$\left(\begin{array}{ccc}0.925 \pm 0.109 & -0.011 \pm 0.110 & 0.038 \pm 0.095 \\ -0.009 \pm 0.110 & 0.929 \pm 0.113 & 0.001 \pm 0.115 \\ -0.026 \pm 0.122 & -0.019 \pm 0.110 & -0.879 \pm 0.098\end{array}\right)$	
E_{k}	2.567 ± 0.279	2.696 ± 0.215	
$\mathcal{C}[\rho]$	0.778 ± 0.126		0.871 ± 0.084
$\mathcal{S}[\rho]$	1.760 ± 0.161		1.851 ± 0.111
$R_{\text {CHSH }}^{*}$	1.103 ± 0.163		1.276 ± 0.094

SM values: $C_{i j}^{\mathrm{SM}}=\left(\begin{array}{lll}1 & & \\ & 1 & \\ & & -1\end{array}\right)$

$$
\begin{aligned}
E_{\mathrm{SM}}[\rho] & =3 \\
\mathcal{S}_{\mathrm{SM}}[\rho] & =2 \\
R_{\mathrm{CHSH}}^{S M} & =\sqrt{2} \simeq 1.414
\end{aligned}
$$

Entanglement $\Longrightarrow E>1$

$$
\text { Steerablity } \Longrightarrow \mathcal{S}[\rho]>1
$$

Bell-nonlocal $\Longrightarrow R_{\text {CHSH }}>1$

Result 2

	ILC			FCC-ee		
$C_{i j}$	$\left(\begin{array}{c}0.830 \pm 0.176 \\ -0.034 \pm 0.160 \\ -0.001 \pm 0.158\end{array}\right.$	0.020 ± 0.146 0.981 ± 0.1527 -0.021 ± 0.155	$\left.\begin{array}{l}-0.019 \pm 0.159 \\ -0.029 \pm 0.156 \\ -0.729 \pm 0.140\end{array}\right)$	$\left(\begin{array}{c}0.925 \pm 0.109 \\ -0.009 \pm 0.110 \\ -0.026 \pm 0.122\end{array}\right.$	-0.011 ± 0.110 0.929 ± 0.113 -0.019 ± 0.110	$\left.\begin{array}{c}0.038 \pm 0.095 \\ 0.001 \pm 0.115 \\ -0.879 \pm 0.098\end{array}\right)$
E_{k}		2.567 ± 0.279	$\sim 5 \sigma$		2.696 ± 0.215	$\gg 5 \sigma$
$\mathcal{C}[\rho]$		0.778 ± 0.126	$\sim 5 \sigma$		0.871 ± 0.084	$\gg 5 \sigma$
$\mathcal{S}[\rho]$		1.760 ± 0.161	$\sim 3 \sigma$		1.851 ± 0.111	$\sim 5 \sigma$
$R_{\text {CHSH }}^{*}$		1.103 ± 0.163			1.276 ± 0.094	$\sim 3 \sigma$

SM values: $C_{i j}^{\mathrm{SM}}=\left(\begin{array}{lll}1 & & \\ & 1 & \\ & & -1\end{array}\right)$

$$
\begin{aligned}
E_{\mathrm{SM}}[\rho] & =3 \\
\mathcal{S}_{\mathrm{SM}}[\rho] & =2 \\
R_{\mathrm{CHSH}}^{S M} & =\sqrt{2} \simeq 1.414
\end{aligned}
$$

Entanglement $\Longrightarrow E>1$

$$
\text { Steerablity } \Longrightarrow \mathcal{S}[\rho]>1
$$

Bell-nonlocal $\Longrightarrow R_{\text {CHSH }}>1$

Result 2

	ILC		FCC-ee		
	$\left(\begin{array}{ccc}0.830 \pm 0.176 & 0.020 \pm 0.146 & -0.019 \pm 0.159 \\ -0.034 \pm 0.160 & 0.981 \pm 0.1527 & -0.029 \pm 0.156 \\ -0.001 \pm 0.158 & -0.021 \pm 0.155 & -0.729 \pm 0.140\end{array}\right)$	$\left(\begin{array}{ccc}0.925 \pm 0.109 & -0.011 \pm 0.110 & 0.038 \pm 0.095 \\ -0.009 \pm 0.110 & 0.929 \pm 0.113 & 0.001 \pm 0.115 \\ -0.026 \pm 0.122 & -0.019 \pm 0.110 & -0.879 \pm 0.098\end{array}\right)$			
$C_{i j}$	2.567 ± 0.279	$\sim 5 \sigma$		2.696 ± 0.215	$>5 \sigma$
E_{k}	0.778 ± 0.126	$\sim 5 \sigma$		0.871 ± 0.084	$>5 \sigma$
$\mathcal{C}[\rho]$	1.760 ± 0.161	$\sim 3 \sigma$		1.851 ± 0.111	$\sim 5 \sigma$
$\mathcal{S}[\rho]$	1.103 ± 0.163			1.276 ± 0.094	$\sim 3 \sigma$
$R_{\text {CHSH }}^{*}$					

SM values: $\quad C_{i j}^{\mathrm{SM}}=\left(\begin{array}{ccc}1 & & \\ & 1 & \\ & & -1\end{array}\right)$

$$
\begin{aligned}
E_{\mathrm{SM}}[\rho] & =3 \\
\delta_{\mathrm{SM}}[\rho] & =2 \\
R_{\mathrm{CHSH}}^{\mathrm{SM}} & =\sqrt{2} \simeq 1.414
\end{aligned}
$$

Entanglement $\Longrightarrow E>1$

$$
\text { Steerablity } \Longrightarrow \delta[\rho]>1
$$

$$
\text { Bell-nonlocal } \Longrightarrow R_{\mathrm{CHSH}}>1
$$

Superiority of FCC-ee over ILC is due to a better beam resolution

	ILC	FCC-ee
energy (GeV) luminosity $\left(\mathrm{ab}^{-1}\right)$	250	240
beam resolution $e^{+}(\%)$	0.18	5
beam resolution $e^{-}(\%)$	0.27	$0.83 \cdot 10^{-4}$

CP measurement

- Under CP, the spin correlation matrix transforms: $C \xrightarrow{C P} C^{T}$
- This can be used for a model-independent test of CP violation. We define:

$$
A \equiv\left(C_{r n}-C_{n r}\right)^{2}+\left(C_{n k}-C_{k n}\right)^{2}+\left(C_{k r}-C_{r k}\right)^{2} \geq 0
$$

- Observation of $A \neq 0$ immediately confirms CP violation.
- From our simulation, we observe

$$
A=\left\{\begin{array}{ll}
0.204 \pm 0.173 & \text { (ILC) } \\
0.112 \pm 0.085 & \text { (FCC-ee) }
\end{array} \quad \longleftarrow \quad \begin{array}{l}
\text { consistent with } \\
\text { absence of CPV }
\end{array}\right.
$$

- This model independent bounds can be translated to the constraint on the CPphase δ
$\mathscr{L}_{\text {int }} \propto H \bar{\psi}_{\tau}\left(\cos \delta+i \gamma_{5} \sin \delta\right) \psi_{\tau} \longrightarrow C_{i j}=\left(\begin{array}{ccc}\cos 2 \delta & \sin 2 \delta & 0 \\ -\sin 2 \delta & \cos 2 \delta & 0 \\ 0 & 0 & -1\end{array}\right) \longrightarrow A(\delta)=4 \sin ^{2} 2 \delta$

CP measurement

- Focusing on the region near $|\delta|=0$, we find the $1-\sigma$ bounds:

$$
|\delta|< \begin{cases}8.9^{\circ} & \text { (ILC) } \\ 6.4^{\circ} & \text { (FCC-ee) }\end{cases}
$$

- Other studies:

$$
\begin{array}{lll}
\Delta \delta \sim 11.5^{\circ} & (\text { HL-LHC }) & \text { [Hagiwara, Ma, Mori 2016] } \\
\Delta \delta \sim 4.3^{\circ} \quad(\text { ILC }) & {[\text { JJeans and G. W. Wilson 2018] }}
\end{array}
$$

Summary

- High energy tests of entanglement and Bell inequality has recently attracted an attention.
. $\tau^{+} \tau^{-}$pairs from $H \rightarrow \tau^{+} \tau^{-}$form the EPR triplet state $\left|\Psi^{(1,0)}\right\rangle=\frac{|+,-\rangle+|-,+\rangle}{\sqrt{2}}$, and maximally entangled.
- We investigated feasibility of quantum property tests @ ILC and FCC-ee.
- Quantum test requires to a precise reconstruction of the tau rest frames and IP information is crucial to achieve this.
- Spin correlation is sensitive to CP-phase and we can measure the CP-phase as a byproduct of the quantum property measurement.

	Entanglement	Steering	Bell-inquality	CP-phase
ILC	$\sim 5 \sigma$	$\sim 3 \sigma$		8.9°
FCC-ee	$>5 \sigma$	$\sim 5 \sigma$	$\sim 3 \sigma$	6.4°

The research leading to the results presented in this talk has received funding from the Norwegian Financial Mechanism for years 2014-2021, grant nr 2019/34/H/ST2/00707

> Understanding the Early Universe: interplay of theory and collider experiments

Joint research project between the University of Warsaw \& University of Bergen

$$
\begin{aligned}
\left.\sigma\left(e^{+} e^{-} \rightarrow H Z\right)\right|_{\sqrt{s}=240 \mathrm{GeV}} & =240.3 \mathrm{fb} \\
B R\left(H \rightarrow \tau^{+} \tau^{-}\right) & =0.0632 \\
B R\left(\tau^{-} \rightarrow \pi^{-} \nu_{\tau}\right) & =0.109 \\
B R(Z \rightarrow j j, \mu \mu, e e) & =0.766 \\
\sigma\left(e^{+} e^{-} \rightarrow H Z\right)_{240}^{\mathrm{unpol}} \cdot B R_{H \rightarrow \tau \tau} \cdot\left[B R_{\tau \rightarrow \pi \nu}\right]^{2} \cdot B R_{Z \rightarrow j j, \mu \mu, e e} & =0.1382 \mathrm{fb}
\end{aligned}
$$

