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Muon g-2 anomaly

Vacuum polarization function vs g-2 Image taken from g-2 collaboration
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(e Is the electric charge, m,, is the muon mass, c is the speed of

light, g % 2 at the quantum level. a,X ‘IO9 - 1165900

Can we explain the gap by new physics?
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Can we explain the gap by including non-analytic

Corrections in a(u)? (Topic covered in this talk)
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Motivation

Vol. 52 (2021) Acta Physica Polonica B No 6-7

THE BIG QUESTIONS IN
ELEMENTARY PARTICLE PHYSICS

GERARD 'T HOOFT

Faculty of Science, Department of Physics, Institute for Theoretical Physics

Princetonplein 5, 3584 CC Utrecht, The Netherlands
g.thooftQuu.nl

http://www.staff.science.uu.nl/"hooft101

The question How do we sum the perturbation terms, or is there another

way to obtain the exact equations for all interactions? is correctly posed but
it seems to be not so urgent. We can arrange the diagrams in such a way that
diagrams calculated using perturbation theory determine with a satisfactory
accuracy how the elementary particles will interact under practically all
circumstances, as if we nearly have the ‘wltimate theory’ at our fingertips.

But this is not true for many reasons. First, the perturbation expansions
are still formally divergent, so that we still do not quite understand what
the equations are at the most fundamental level. Secondly, there is one
force that can only be taken into account at the most rudimentary level:
gravity. The gravitational force cannot be included in an optimal way; we
return to this shortly. The third reason for concern is that there appear to
be phenomena at a very large distance scale in the universe: dark matter
and dark energy. These require extensions of what we know: new particles
or new theories or both.




Borel Summation (or resummation)

1. Start from

O
f = Zakka, a;, X k!
k=0

Convergent series | — | Summation | — | Analytic functions

lts Borel transform is (B(x"™1) = t"/n!)

> tk o =g }3 I -Ne l
]g - Z Qg == T EE &
N k! R S S
k=0 . = = = =
= S S
% z
If f converges, the Borel sum of fis given by l l
coe'? Transseries | — | E-B Summation | — | Analyzable functions
_ _ r —1lx
Se(f (X)) =Le°B (f (X)) — J f (t) € dt This is the only known way to close functions under the listed operations.
0
(8 = 0, standard Laplace) (i) Algebraic operations: addition, multiplication and their inverses.

A . o o (ii) Differentiation and integration.
1) If f has do not have poles in the positive real axis f is Borel

(iii) Composition and functional inversion.
sumable

O. Costin, Monographs'and Sufvéys in Pure and Apbliéd Matheﬁiatics, Chapman and Hall/CRC, 2008.
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Borel-Ecalle summation
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Instatons and Renormalons

Renormalons

QED q
/lﬁb(x)4 p-k

x nlAntl

(At least) Two problems: n!-behavior sources

» Instantons: these can be treated with semi-classical methods p
(expansions around saddle points, e.g. see ,
optimal truncation,...). The semi-classicality refers to the fact
that instantons are related to minimization of the classical
action, and they are usually connected with tunneling (e.g.
bounce solutions and vacuum decay that are indeed
semi-classical calculations, see ). So they are
not "dangerous objects” for QFT.

p+k

Figure: 't Hooft's skeleton diagram.

Fig. 3 Fourth member of a subclass of dia-
grams discussed in this section.

IR divergencies

avoid the ambiguity = they signal some inconsistency in the

attempt to extend renormalization to finite values of the VISV VI V. O O OHO~ O OO~ OO O
coupling. renormalons -4 82 161>

» Renormalons: deep problem, no semi-classical limit, no way to l l instantons

4
B

As said above, because these objects (and because of the path
deformation of the Laplace integral), series are turned in

transseries. Fig. 6 Borel z plane for QCD. The circles denote IR

divergences that might vanish or become unim-
portant in colour-free channels.

T' Hooft 1979
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Key results

1.We apply the a Borel-Ecalle resummation procedure to renormalons, merging it with theory

Renormalization Group.

2. Extends perturbation theory to be valid for finite coupling. PT is only valid when a, — 0 (Dyson
1957)

3.We get a transseries analytic expression for the QCD Adler function described by a finite number
of arbitrary constants after resumming renormalons

a

, . A 2_ ! 1 ’ , Blas) = 1> 35 = Poor? + prad + Olas)™.

D(Q7) = Dy(Q") cyefo@ + Celoes@ D,(Q9),

2
0 as(Q )

4 We then apply these new ideas to the QCD Adler function and find we can fit the “experimental

Adler function” using an effective running for the strong coupling a,

11
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Key result

1.2} et
1.0 T |
0.8:- ———————— Exp. points
: l — Resurgence
0.6 | = PT
[ | —— 1 renormalon
0.4 —  2renormalons
0.27
0.0 . . . . | . . . . | . | . | . . . . | . . . . |
0.0 0.5 1.0 1.5 2.0 2.5

—1 [d4xe_iqx <()

4
 11ln(z+xg) —2neln (2 +xq) /37

Q% /A2 Xq = 4mZ/A?,

as(Q)

A
A Xg — 4m3/A2
Parameter| Low energy fit
K 0.80512
C 0.23957
C1 -0.35794
A 697 MeV

D(0) extracted from c(eTe™ — hadrons)

Using dispersion relations

S. Eidelman, E Jegerlehner , A.L. Kataev , O. Veretin (1998)
Published in: Phys.Lett.B 454 (1999) 369-380 - e-Print: hep-ph/9812521 [hep-ph]
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Resurgence of the RGE

e Consider
rz(rez) =1 (p2 — mz) G(L, ay) L = log(u)

where

G(L, ay) = yo(a,) + Z y(a)L'+ R(a,) , where
i=1

_ adas 3 4
o G satisfies the RGEs play) = p M = poas + prag + O(ay)
da (1) I dlogZ I dlogG
[~ 0, + fla)d, —71G(L,a) =0, fla,) = . fa) =———= ROE_Z TS
d log(p) 2 dlog(u) 2 dlog(u)

As it is well known one can use this equation to find the Green function at all orders in PT

13
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RGE, Renormalons and Resurgence

o0
. Plugging this non-perturbative G(L, ;) = Z yi(aS)Li + R(a,) into the RGE, one get at

=0
O(LY)

2(y(ag) — 71(ay)) N 2 y7(ay) P
p(ay) p(ay)

e Recall that in perturbation theory the 2-point function may be written as

R'(ay) =

p

G ~ y() T Z yi(aS)Li ’

l
L = In(—g?/u?) and using the renormalization condition G = 1 when L = 0, Yo = 1

14
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RGE, Renormalons and Resurgence
e Using the results of Refereces

 A.Maiezza and J. C. Vasquez, Non-local Lagrangians from Renormalons and Analyzable Functions, Annals Phys. 407 (2019) 78—
91,[1902.05847].

e J. Bersini, A. Maiezza and J. C. Vasquez, Resurgence of the Renormalization Group Equation, Annals Phys. 415 (2020) 168126,
[1910.14507].

aRa) _ 4 )+ Polagg +ats) — g Ray a | ——1 )+ O6R@)?
das ﬁ()as2 ﬁ(% o '60

y(a,) = y(a,) + g R(a,) + %(ZS%R(%)) + O(R? | a.R),

yi(a) = aa, + O(a?)

vo(ar) := 1 + aga, + O(ar?)

15
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91,[1902.05847].

e J. Bersini, A. Maiezza and J. C. Vasquez, Resurgence of the Renormalization Group Equation, Annals Phys. 415 (2020) 168126,

—H910.14507].
(apg +a+s) — R(a,)
q . R(a,) + M + a,
da " f I a,
ODE in a; e
(a ) — }/1(61 ) + qR((l ) T (ZSCI R(O( )) T @(Rz ‘ a R) Non-linear in R(a,)
yi(a) = aa, + O(a?) , da, , ' ,
ﬁ(as) — U — ﬁOaS T ﬁlas T @(as)

d 2
vo(a) := 1+ aga. + O(a?) s
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e BN 14507] Posmon of singularities in the Borel Transform | |
dR 9 ang +a+ s R(a a / \
( ) ) Polanq ) = P1q R(ay) ra | L -1 ) 0R@)?)
ﬁ Oa ﬁ 0 R ﬁ 0 /
ODE ina, T 1 i ~ "
y(a ) — }/1((1 ) T QR((X ) T (ZSCI R(O( )) T @(R ‘ o R) Non-linear in R(a,)
yi(a) = aa, + O(a?) , da, , ' ,
ﬁ(as) — U — ﬁOaS T ﬁlas T @(as)

d 2
vo(a) := 1+ aga. + O(a?) s
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RGE, Renormalons and Resurgence
e Using the results of Refereces

 A.Maiezza and J. C. Vasquez, Non-local Lagrangians from Renormalons and Analyzable Functions, Annals Phys. 407 (2019) 78—
91,[1902.05847].

e J. Bersini, A. Maiezza and J. C. Vasquez, Resurgence of the Renarmahzatzon Group Equation, Annals Phys. 415 (2020) 168126,

~H10.14507] 5

ﬁ (a g+a+s-paRa) [ a \
T_Ra) AT 1T Jag[ — - 1 )+ OR(@)?) |
o’ foci; ~ R a2\ )T
ODE in «; i g SN
(a ) — }/1(61 ) + qR((l ) T (ZSCI R(O( )) + @(R ‘ a R) Non-linear in R(a,)
, The solution to this equation is a
yi(a,) = aa, + O(a;) 0 A
Transseries R(ag) = Z C"R (a,) a’ ePoss
V()(O‘S) .= 1 1 a()as 1 @(asz ) 0. Costin, Monographs and Surveys in Pure and Apgizl(g/[atheﬁiatics, Chapman and Hall/CRC, 2008.
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RGE, Renormalons and Resurgence

* The solution to the above non-linear equation is

Q)
R(ag) = Z C"R (a,) ()csk‘f e’0%s (one parameter transseries) PT gives Ry(«,)
k=0

e The Borel transform of the solution is of the form

B(R(2)) « ).

| Z |
(z nq )1+5 o - (z - ﬂ)2+@(ﬂ1)
:BO :BO

from the bubble-diagrams expression then g = 1 and s is such that we get quadratic poles

 The above non-linear differential equation is precisely of the kind studied in

O. Costin, Monographs-and Sufvéys in Pure and Apf)liéd l\/[atheﬁiatics, Chapman and Hall/CRC, 2008.
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RGE, Renormalons and Resurgence

* The solution to the above non-linear equation is

R(ag) = Z C"R (a,) aff eﬁ
k=0

HOW DO WE FIND THE FUNCTIONS R, (a,) FORn > 0 ?

KEY CONCEPT OF “RESURGENCE”

20
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Demystifying Resurgence

1. Consider the transseries t Borel(f) t Borel(f)

fo) = ) fy0e™
n=0

2. We are interested in the difference

(S9- = S9)fC) = Y (Sg-fy, = 5gu ) - € s9(f(0)) = L o B(f(x)) = J fo) e ar

0
n

SQ— — S9+ O @9 — S9+ o (1 —+ diSCQ)

21
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Alien derivative

The Stokes Automorphism &, has the following structure

&y = b, A, =log @,

J. Ecalle, Six lectures on transseries, analysable functions and the constructive proof of Dulac’s conjecture

A, is the Alien Derivative (it has all the properties of a derivative)

The following property holds

[Ae, 6x] = 0, d, = d/0x denotes standard derivative

J. Ecalle, Six lectures on transseries, analysable functions and the constructive proof of Dulac’s conjecture
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Bridge Equation and Resurgence

Consider

dR(a) - q | polagg +a+s) — Py q R(ay) | a 2
da,  Py? Koy s a, o (ﬁo 1) o))

Apply the Alien derivative

. 0

. [ dR(«a : ang +a+s) — A R(a : :

AH( ( S>) 9 pa + Pl )b AoR@@) o (ao / 1)) + O R@
0

J. Ecalle, Six lectures on transseries, analysable functions and the constructive proof of dulac’s conjecture

das ﬁ Oas2 ﬁ (% o

Using | A, das] = ()

dAR(a) ¢ A R(a) + Pt +ats) —fig AyR(a)

— F O(A,R(a)?
das :BOas2 :B(% o ( ’ (S))

23
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Bridge Equation and Resurgence

Consider again

dR(a;) g

das ﬁ Oas2

Ry 2 ot ¥ a9 —Pra R (i i 1) + R

5 One-parameter transseries

Apply the derivative with respect to the one parameter transseries (- = 0/0, )

R(ag) = Z C"R (a,) ¥ e7os
k=0 ;

DR@) __a_y oo, g +a+) = pig 0cR(@)

+ 0(0~R(a.)?

Compare with

Both A R(a,) and 0-R(a,)
Satisfy the same ODE

dA,R . +a+s)— AR .
0 (CZS) _ dq A@R(as) | ,50(6106] a S) IBI qd Rg (CZS) : @(AQR(C(S)Z)
das /BOaS2 8 X

then

A,R(a,) = Ay0-R(a,) Ecalle Brigde Equation. A, Holomorphic constant

24



JUAN CARLOS VASQUEZ. EMAIL: JVASQUEZCARM@UMASS.EDU

Bridge Equation and Resurgence

WE CAN FIT A, FROM DATA

DIFFICULT TO CALCULATE FOR INSTANTONS
SEE DORIGONI, SCIAPPA REVIEWS
AND IMPOSIBLE FOR RENORMALONS
T’HOOFT (1979), ZINN-JUSTIN
MAIEZZA, VASQUEZ

then

A,R(a,) = Ay0-R(a,) Ecalle Brigde Equation. A, Holomorphic constant
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Resurgence

A,R(a)) = A,0-R(a,) Ecalle Brigde Equation

00 . o
Plugeing R(a) = CER (o) o’ ePos above and equaling the powers of C" o’ ePos in each
S81g S K\ s/ Mg )

k=0
side

: 1 : 1
AR (o) = (n+ 1)Agat ePs R (a), in particular A Ry(a,) = Aga’ P R (a,) and so on ...

This 1s Resurgence

26
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Resurgence

LUI&JquLy) .

The Bridge Equation owes its name to the fact that it makes manifest an unexpected
link between the ordinary and alien derivatives of a local object’s formal integral(s). Its
scope 1s stupendous; in fact it is virtually coextensive with “resonance” understood in the

104 J. Ecalle

broadest possible sense, including in particular “trivial resonance” (i.e. \; = 0 or £, = 1 or
¢; = unit root). If we now recall the translatability of even high-order differential equations,
linear or not, into time-independent, first-order differential systems, which themselves are
equivalent to vector fields; and if we further bear in mind that non-trivial Newton poly-
gons (in differential equations) induce vanishing multipliers (in the vector field), we may
grasp why the overwhelming majority of singular differential equations also fall within the
jurisdiction of resurgence, alien calculus, and the Bridge Equation.

27
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Generalized Borel-Laplace resummation: Resurgence
O. Costin, l\/lonographs-and Sufvéys in Pure and Apf)liéd Matheﬁiatics, Chapman and Hall/CRC, 2008.

3. Resurgence: once Y,(7) is known, the functions Y,(z) are given b _ _
J 0(2) z)are g y (Borel(R (a,)) =Y, and l/a, = x

Sz, = <YO‘ — YO‘("‘”+> 0T, T, 172> 2tk in Costin’s book)
where

= [(k+]

—m+ _ y+ +

Yy ’"m=Y; +Z( )S(J)Yk+]07_]

j=1

4. The balanced average

Ybal =Y+ + Z N (Y— . Y—n—l+)_
k k k k
= Image taken from Costin 1995

This definition preserves reality in the sense that when y,(g) is a formal series with real coefficients, then the functions y,fal

Vk. (Costin 2008)

This operation unlike analytic continuation commutes with convolutions.

are also real

28
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Generalized Borel-Laplace resummation: Resurgence

» The Laplace transform: when B(R,) has poles in the positive real axis, the
Laplace transform is modified as follows

o0

£(R) =B (R) =% (R,) = J B(R e~
0

where the balanced average guaranteed that the reality condition is
satisfied

e In the mathematical literature 1/, — x, so the asymptotic expansions
when x — oo correspond to the weak coupling limit o, — 0.

O. Costin, l\/[onographs-and Sufvéys in Pure and Api)liéd Mathematics, Chapman and Hall/CRC, 2008.
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The Adler function

Consider the correlation function of two massless quark currents j, = gy, q

—ijd4xe—iQX<o 7 (j,i0) 0> = (g9, - 4’8, ) T1(Q?) .

Where 0% = — g°
The Adler function is defined as
,dI1(Q°)
dQ?
This function enters in the R, - ratio, hadronic 7 decays and in the

D (Qz) — 47%Q

Hadronic vacuum polarization contributions of the g — 2 anomaly

30
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The Adler function and Resurgence

The Adler function is given by

dI1(Q*)
dQZ

And it can be written in perturbation theory as Renormalon diagrams

aS = n n
D pert (Q2> =1 - 1;055 [dn (—Po) —|-5n]- (Divergent)

da
Where dn X n' and ﬁ(as) — I[/tzd ; — ﬁoasz +ﬁ1as3 + @(as)4
H

The perturbative expression is known up ton = 3

+ 2 --

_q_ c} _

D (Qz) — 47202

e S.G. Gorishnii, A. L. Kataev and S. A. Larin, The O(a.>)-corrections to
O(€*e” — hadrons) and I'(t~ — v, + hadrons) in QCD, Phys. Lett. B 259 (1991) 144—150.

e L.R. Surguladze and M. A. Samuel, Total hadronic cross-section in e+ e- annihilation at the four loop level of perturbative QCD, Phys. Rev. Lett. 66 (1991) 560-563.

e A.L.Kataev and V. V. Starshenko, Estimates of the higher order QCD corrections to R(s), R(tau) and deep inelastic scattering sum rules, Mod. Phys. Lett. A 10 (1995) 235-250, [hep-ph/9502348].
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Naive non-abelianization

D pert (Qz) =1 0;[5 Za? [dn (—Bo)" Bn] :
n=0

Naive Non-abelianization is a model for the high order behavior
(Beneke. Phys.Rept. 317 (1999) 1-142 e e-Print: hep-ph/9807443 [hep-ph]) q

2|

In practice it means:

) We use the known perturbation theory expression of the Adler function up to O(a)
I1) For Higher loop correction one assumes the fermion bubble-diagrams dominate i.e.

o, ~0forn >4 andd, is given by evaluating the bubble diagrams so that

d x Kn!

Where K is an arbitrary constant
(Beneke. Phys.Rept. 317 (1999) 1-142 e e-Print: hep-ph/9807443 [hep-ph])
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The Adler function and Resurgence

1.Using the Borel-Ecalle resummation procedure explained

O. Costin, Monographsvand Svuvrv'eys in Pure and Api)liéd Mathematics, Chapman and Hall/CRC, 2008.

we get

a

4r 2 1

2 PAY A L poas(Q?) : 2
D(Q ) DO(Q Cle 0 s + Ce 0%s 5 Dl(Q )9

Perturbative + Kn! Contributions using Borel transform plus Cauchy principal value

prescription. The constant K is fitted to data
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The Adler function and Resurgence

1.Using the Borel-Ecalle resummation procedure of

O. Costin, Monographsvand Svuvrv'eys in Pure and Api)liéd Mathematics, Chapman and Hall/CRC, 2008.

we get

D% = Dy(©0>) §

Non-perturbative ambiguity due to the first simple-pole Renormalons

Constant ¢, is arbitrary. We fix ¢, the best fit to “experimental Adler function”
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The Adler function and Resurgence

1.Using the Borel-Ecalle resummation procedure of

O. Costin, Monographs'and Svuer'eys in Pure and Apf)liéd Mathematics, Chapman and Hall/CRC, 2008.

we get

“

47 2 /S
D(Q?) = Dy(Q?) — —=¢,hn@ +(Celn@
0

,
a, ( Qz) D I(Q ) 5

Resurgent contribution from quadratic poles. One arbitrary constant C fitted to data and one arbitrary constant

Kin Dl(Qz) due to resurgence relations

35



JUAN CARLOS VASQUEZ. EMAIL: JVASQUEZCARM@UMASS.EDU. ACFI & UMASS AMHERST

The Adler function and Resurgence

1. Resumming these diagrams

D (Qz) =D (Qz) — ﬂc eﬂoai(Q% / Ceﬁoa;@z) : pD (Qz) '
0 ﬁ() 1 aS(QZ) 1 .

D, (07) =22 {2675 - (& + 1) tog (1 = e737) =2 (¢4 1) i) (&75)|
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The Adler function and Resurgence

1.Using the Borel-Ecalle resummation procedure of

O. Costin, Monographsvand Svuvrv'eys in Pure and Apf)liéd Mathematics, Chapman and Hall/CRC, 2008.

we get

a

2 ), 4rm T o 1 p 2
D(Q ) — DO(Q ) — —Clgﬁoas(Q) -+ (e Poas(@9) > DI(Q ),
0 as(Q )

In summary we fit to data three constants K, ¢, and C
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Key result (with Landau pole)

Phys.Lett.B 817 (2021) 136338 + e-Print: 2104.03095 [hep-ph]

[ | \ | | | | | | i
\ | _
1.5 —W RN ! Experimental data |
\ | i
1 IR " + Fitedpons |AM-Vasquez 21}
1 _4 | \ X — Resurgence .
i ‘\‘ L. --  Perturbative
1 3 HHH E R ——  2"9R renormalon i
' I \ T —  2and 3" IR ren.

-
-
—
~—

D(Q)

—0.023,1.41, -0.51 Q <mg,

| C’K’ﬁ:{—8.88,0.99,—5.27 Q >m.

| as(Mz) =0.1198 |
1.07 |, : :

Landau Pole

0.9} | ! :

o e
Q(GeV)

We find good fit to data up to £ ~ 0.7 GeV where the Landau Pole breaks the description

Around this scale, the coupling diverges and the transseries expansion
ceases to work.
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The problem of the Landau pole

The problem of the IR Landau pole

We saw that the theoretical expression follows the experimental

one up to the IR Landau pole - there, things stop working because | \
the coupling explode, but not because there is some of wrong in 1
the resurgent procedure per se. |
305
. . S
Effective solution =
Effective running for as. 0.2
The simplest realization is to employ Cornwall’s coupling: e
0.01 0.10 1 10 100
AT H(GeV)
as(Q) =

11In(z+ xg) —2n¢In(z 4+ xq) /3
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The problem of the Landau pole

The problem of the IR Landau pole

4
11In(z+ xz) —2n¢In(z+ xq4) /3

where z = Q2//\2, ng is the number of flavors, xz = 4m§//\2,
Xqg = 4m(27//\2, the light constituent quark mass my = 350 MeV,
the gluon mass m; ~ 500 MeV, and A denotes the QCD hadronic

(non-perturbative) scale.

WORK IN PROGRESS

Oés(Q) —

Possibility to describe also the running within our approach?
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Key result

1.2} I
100 L ,
o) 0.8:- ————————— Exp. points
o : — Resurgence
0.6¢ | == PT
[ —— 1 renormalon
0.4 —  2renormalons
0.2}
0.0 —
0.0 0.5 1.0 1.5 2.0 2.5
Q(GeV)
47 2 . K
D(Q?%) = Dy(Q?) — —c,e02@ + Celoes@ : D,(0?),
IBO as(Q)

4
 11ln(z+xg) —2neln (2 +xq) /37

s o = 43/

as(Q)

Xg — 4m3/A2
Parameter| Low energy fit

K 0.80512

C 0.23957

C1 -0.35794

A 697 MeV

D(0) extracted from c(eTe™ — hadrons)

Using dispersion relations

S. Eidelman, E Jegerlehner , A.L. Kataev , O. Veretin (1998)
Published in: Phys.Lett.B 454 (1999) 369-380 - e-Print: hep-ph/9812521 [hep-ph]
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Muon g-2

Vacuum polarization function vs g-2

Hadrons

The magnetic moment of the muon i directed along its spin s is
given by

, Qe
H= 85 5,
m,,C
(e Is the electric charge, m,, is the muon mass, c is the speed of
light, g # 2 at the quantum level.
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Muon g-2

Vacuum polarization function vs g-2

Hadrons

[Lautrup,1971]}
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Muon g-2

Vacuum polarization function vs g-2

Tentative idea to implement (from [Keshavarzi, Marciano, Passera,
Sirlin, "20]): Assume the g — 2 discrepancy can be solely explained
by modifying the SM vacuum polarization function contribution.

Problems? Yes, may be in tension with electro-weak precision
tests! [Crivellin, Hoferichter, Manzari,Montull, '20],
[Malaescu, Schott '21],....

However, [Keshavarzi, Marciano, Passera, Sirlin, '20| suggest that
the data for the hadronic cross-section o(e*e~ — hadrons) may
have some missed contributions for @ < 0.7 GeV, energy range in
which constraints do not rule out the possibility of explaining the
g — 2 discrepancy.
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Muon g-2

i . i 47
- g Q — 9
Vacuum polarization function vs g-2 Q) = TG Gt x) /3
,,,,, O27A2 oy = Am2 /A%
1_2_— —— a, discrepancy . Z p— Q /A | Xq - q ’
. — fit D at low energy ~ ~ ' '
I experimenta | J— 2 2
1.o:— P tal D Xg 4mg/AM
0.8/
] Parameter| Low energy fit|a, discrepancy
S nal
5 ¢ K|  0.80512 0.86501
04l C 0.23957 0.76396
C1 -0.35794 -0.18437
0'2:" A 697 MeV 677 MeV
0.0} | | | oi; 0.4 9ﬁ5 0.6 |
00 02 04 06 08 10 12

5. Peris, M. Perrottet and E. de Rafael, Mlatching lon:q
and short distances in large N(c) QCD, JHEP 05

Figure: The Adler function in the energy range (0,1.3) GeV. The purple
region denotes the “experimental” Adler function from tau data. The
black line represent the Adler function. For a slightly different value of

. ) — (Q) Q < \/ﬁ GeV
ble)= { Dyoe (@) Q>vi6Gev. UV

the constants C, K, c;, the dashed, red line represents the Adler function Ufsiime e el off (e Lo ernteme G o TBs, 16w g
saturating the muon g — 2 discrepancy between experiments and | for the leading contribution of the hadronic vacuum po-
predictions. The inset is a zoom on the region of interest. ;‘ larization:

a{!VP) = 6.85024 x 1072 (12)
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Conclusions

1. We propose a renormalon-based approximation of the QCD Adler function
using the Borel-Ecalle resummation procedure of

O. Costin, Monographs-and Sufvéys in Pure and Apf)liéd Matheﬁiatics, Chapman and Hall/CRC, 2008.

merged and applied to the theory of the RGE

e A.Maiezza and J. C. Vasquez, Non-local Lagrangians from Renormalons and Analyzable Functions, Annals Phys. 407 (2019) 78—
91,[1902.05847].

e J. Bersini, A. Maiezza and J. C. Vasquez, Resurgence of the Renormalization Group Equation, Annals Phys. 415 (2020) 168126,
[1910.14507].

2. We provide an improvement to perturbation theory and as a result, we get a
function that accurately follows the behavior of the data (using an effective

running for a (1))

46



JUAN CARLOS VASQUEZ. EMAIL: JVASQUEZCARM@UMASS.EDU. ACFI & UMASS AMHERST

Conclusions

1. We can reproduce both the leading value for the HVP contribution to a,
predicted by dispersive approaches, as well as the most recent value
consistent with the MUON g — 2 collaboration data and lattice

calculations

2. This opens the possibility of explaining the g-2 anomaly within the SM by
including non-analytic corrections in ¢, to the VHP contribution

47



JUAN CARLOS VASQUEZ. EMAIL: JVASQUEZCARM@UMASS.EDU

Thank you
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Logical Roadmap for the RRGE

Fg) =] (p2 — mz) G(L, a,)

CG(L, ay = yya,) + Z yi(aS)Li + R(a,) , where

/

dR(a P _n_
4 4 Ray+... <> Rag=Y C'Ra)a e
da Poc; Costin ref. =0

Mailezza, Vasquez

_|_

[AQ’ aaS] =0 : AQR(aS) — A6’ aCR(aS) : AQRn(as) = (n I)AH asg eﬁ Rn+1(as)

Ecalle Ref. Bridge equation Resurgence
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Backup slides
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Operator Product Expansion for Adler function

1.Compare with the usual OPE based transesries structure

dIl (0°) % 1
D (Qz) — Q2 sz — ;O Ck (as(,u),hl —2> X (Q2>k X <@k>

where are infinite arbitrary constants related to the resummation prescription

Instead we were able to reduce these infinite arbitrary constants to just one
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RGE and renormalons

* The crucial point is that at all orders in perturbation theory

r(g) = 11(8),

however this Is not true beyond perturbation theory and

1
y(g) — 7,(g) = M(g,R), where M(R, g) = q R(g) + 5(1"1?(@2 +25g R(g)). ..,

and we can write the previous equation as

29 R(g)  2(Prq —ap) R(g)

+ 0(g% g*R(g), R(g)*),
5 o I . (8%, 87 R(8), R(g)")

R'(g) =
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Non-perturbative contributions to the anomalous dimension

1. Assume f(g) and y(g) are known

2. Then one can in principle solve the RGE to find the desired Green functions

3. We know this is not the whole story since from Renormalons, Green function
do have non-perturbative (hon-analytic) contributions with arbitrary constants
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Non-perturbative contributions to the anomalous dimension

1. Therefore, [(g) or y(g) must have non-analytic contributions as well. If fact
using the RGE it is possible to show

y=7; © R=0
then there must exist a function M(R, g) such that

y =y, +MWR(g),g), M@O,g) =0
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Generalized Borel-Laplace resummation: Resurgence (Change

here)
e |t can be summarized as follows:

1. Given a divergent formal series y,(g) (solution to the previous equation), one considers the
associated formal transseries

f(8) = yo(g) + ), C" g™ e~ ey (o).
k=1

C is an arbitrary constant, B(y,(g))(z) has poles at 1,21 35, ... yy(g) is the function whose
asymptotic expansion is identified with perturbation theory

2. For each function B (yk(g)) = Y,(2), one builds the functions

Y ,f(z) = Y,(z £ ie) (Analytic continuations above or below the real axis)

O. Costin, Monographs'and Sufvéys in Pure and Apf)liéd Mathematics, Chapman and Hall/CRC, 2008.
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Generalized Borel-Laplace resummation: Resurgence
O. Costin, l\/lonographs-and Sufvéys in Pure and Apf)liéd Matheﬁiatics, Chapman and Hall/CRC, 2008.

3. Resurgence: once Y (z) is known, the functions Y,(z) are given by
kv — [ v- —(k—1
SOYk_ <YO _YO( )+>OTk

where y -4+

4. The balanced average

Yo = v+ + Z 27" (Yy — Y, Image taken from Costin 1995

n=1

bal

This definition preserves reality in the sense that when y,(g) is a formal series with real coefficients, then the functions Y, arealso real

Vk. (Costin 2008)

This operation unlike analytic continuation commutes with convolutions.
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Generalized Borel-Laplace resummation: Resurgence

e The Laplace transform: when Y, has poles in the positive real axis, the
Laplace transform is modified as follows

o0

% (v)=LeB(v) =2 (¥,) = J ybale=9ss,
0

where the balanced average guaranteed that the reality condition is
satisfied

e In the mathematical literature 1/g¢ — x, so the asymptotic expansions when
X — oo correspond to the weak coupling limit g — 0.

O. Costin, l\/[onographs-and Sufvéys in Pure and Api)liéd Mathematics, Chapman and Hall/CRC, 2008.
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Example: the simplest equation

—g%y'(g) + y = g , the solution is of the form y(x) = Z a,n!x" so it is divergent

(Adding non linear terms g”" give a infinite number of singularities in the Borel transform of the solution )
The Borel transform %B(y(g)) = Yy(2) is

Y, ()(Z) —

1 —7

1. Write the formal solution

¥(8) = yo(8) + ), Cre ™ 8y (o),
k=1

2. Build the analytic continuations Y (z) =
Y 0(2) 1 —(zxie)

3. Resurgence property: SkYk = (YO_ - Yo_k_1+) °oT,; T,:7—>Z7+k
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3.1. Let’s elaborate on the non-perturbative functions Y,(z), kK > 1, using the resurgence property
(Yy = Y501) o 1) = SY,(2)
Y~ = Y*(z), then

SY,(z) = (YO_ — Y(;r) o7y = —2mio(l —2) o7y = — 27id(2)

27l
Y, = S 0(2)

3.2.8%Y,(z) = (Y5 = Y ') o 1,
Yot =Yt +SYtor |, so
S?Y,(2) = [YF =Yy = SYfer_|]et,

S2Y2(Z) — [SYl o T_l - SY1+ ° T_l] o Tz — O.
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The same appliesto ¥,(z) = Y;3(z) = ... = 0.
3.3. The balanced average for Y,(z) and Y(2):

Y}?al - Y]:_ + Z 2—n(Yk— o Yk—n—1+) ’

n=1

expanding
Ybal Y+ Y, Y—O+ 1 Y- Y—l+
+ (0 0 )+§(0— 0o )Tt ...

i)Yy - Y, =Y, - Y,
i) Yg — Y, =Yy - Y —SYtor =Yy - Y =Yg =Yoo, =0

In the same way and using that Y,(z) = Y5(z) = ... = 0, the other terms also vanishes and
Ybal —(Y+ 4+ YO)

which give precisely the PV. of the Laplace integral.
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In the same way it can be shown that
bal _ 1 + —
Y1 (Z)—E(Yl + Y1)

and the solution is given by

An*C
¥(g) — o(y(g)) = e ¢Ei (1/g) — . e™1s

which is the well known solution that can be found by other methods.

The sum of a Borel-Ecalle summable transseries is by
definition an analyzable function
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The Borel-Ecalle Resummation procedure

|mage taken from ©. Costin, Monographs-and Svuvrv‘eys in Pure and Api)liéd Matheﬁiatics, Chapman and Hall/CRC, 2008.

Convergent series | — | Summation | — | Analytic functions

S o E 3 S £EQ
252 252
8 S B S " E
s ° = @ . .
Z = The resummation of a transseries
| | is by definition an Analyzable Function

Transseries | — | E-B Summation | — | Analyzable functions

This is the only known way to close functions under the listed operations.

2 C"y (x)e™™ — Borel-Ecalle summation — Analyzable Function

n

| will only discuss one-parameter transseries relevant to renormalons at the “leading” order
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The Adler function and Resurgence

1. On to of the perturbative result. We consider the fermion-bubble contributions

These contributions go as n'!

(D.J. Broadhurst, Z. Phys. C 58 (1993) 339-346, https://doi.org/10.1007/BF01560355.)

and the Borel transform goes as

1 v h L (0w
EB[Dbubble](u) ~ Ifl'u - 3 (que ) 1 — (1 _u)2 ;;2 (kz_ (1 _u)z)z,
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The Adler function and Resurgence
1.We rewrite it as (#°=Q% ")

( M. Neubert, Phys. Rev. D 51 (1995) 5924-5941, https://doi.org/10.1103/PhysRevD.51.5924, arXiv: hep-ph/9412265.)

1 3610/3//‘/4 €5M6
FB[Dbubble](Z) > e 5
P () e (i)
B 4 10(p+1) (Q)—‘IP 6 100 _ 5 (Q)—‘lp N
u-e 3 m u-e s m

>

2 21
p=1 _ﬁgp(2p+1)Q4(21/’3j2 Iz) ﬁ§(p+1)(2p+1)Q6(2pﬂj3 IZ) ]

Such that the pole structure of the Borel transform is manifest
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