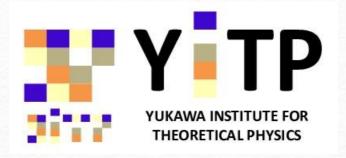
Flow equation, black hole, and singularity

27 July 2020 @ Nagoya U

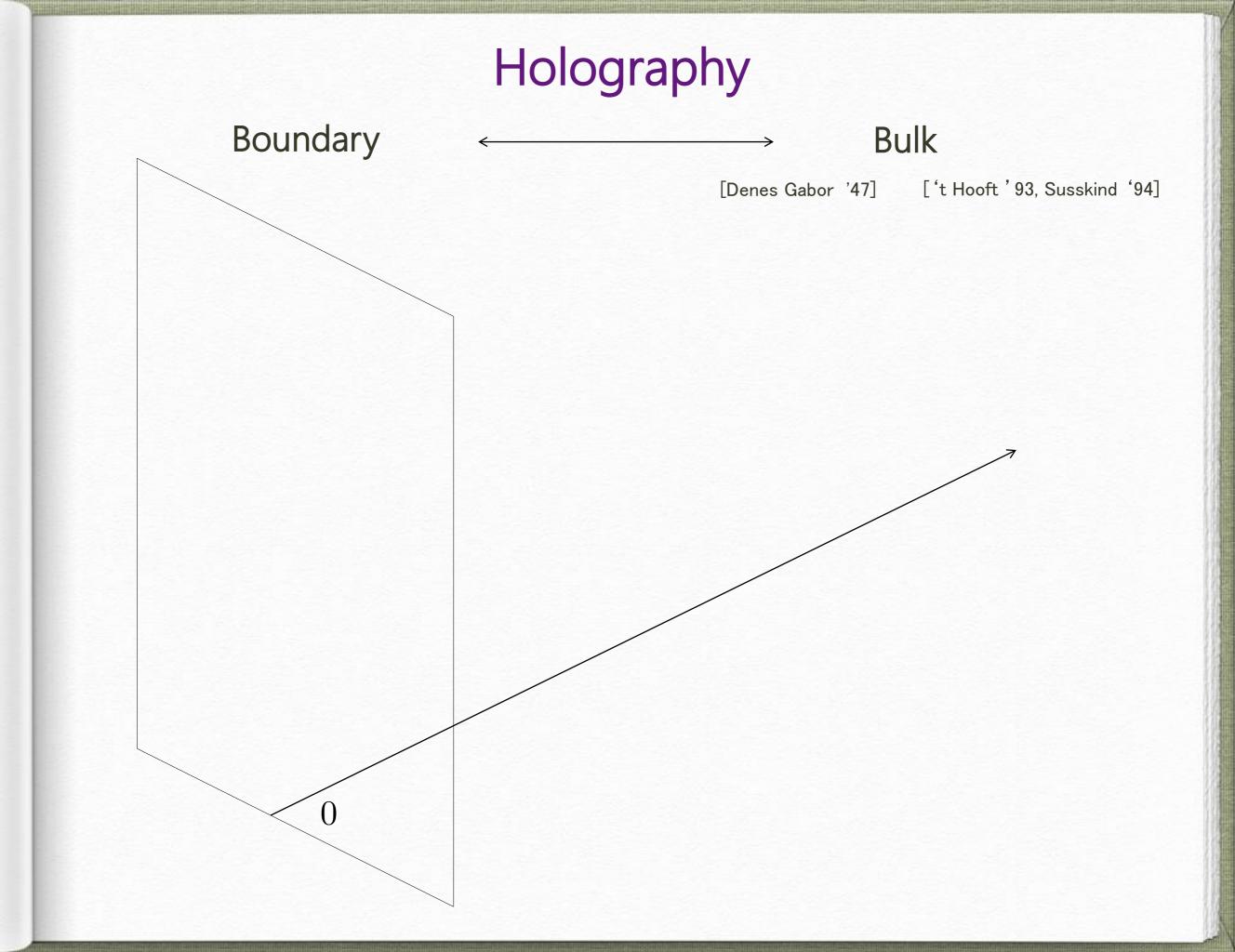
Shuichi Yokoyama

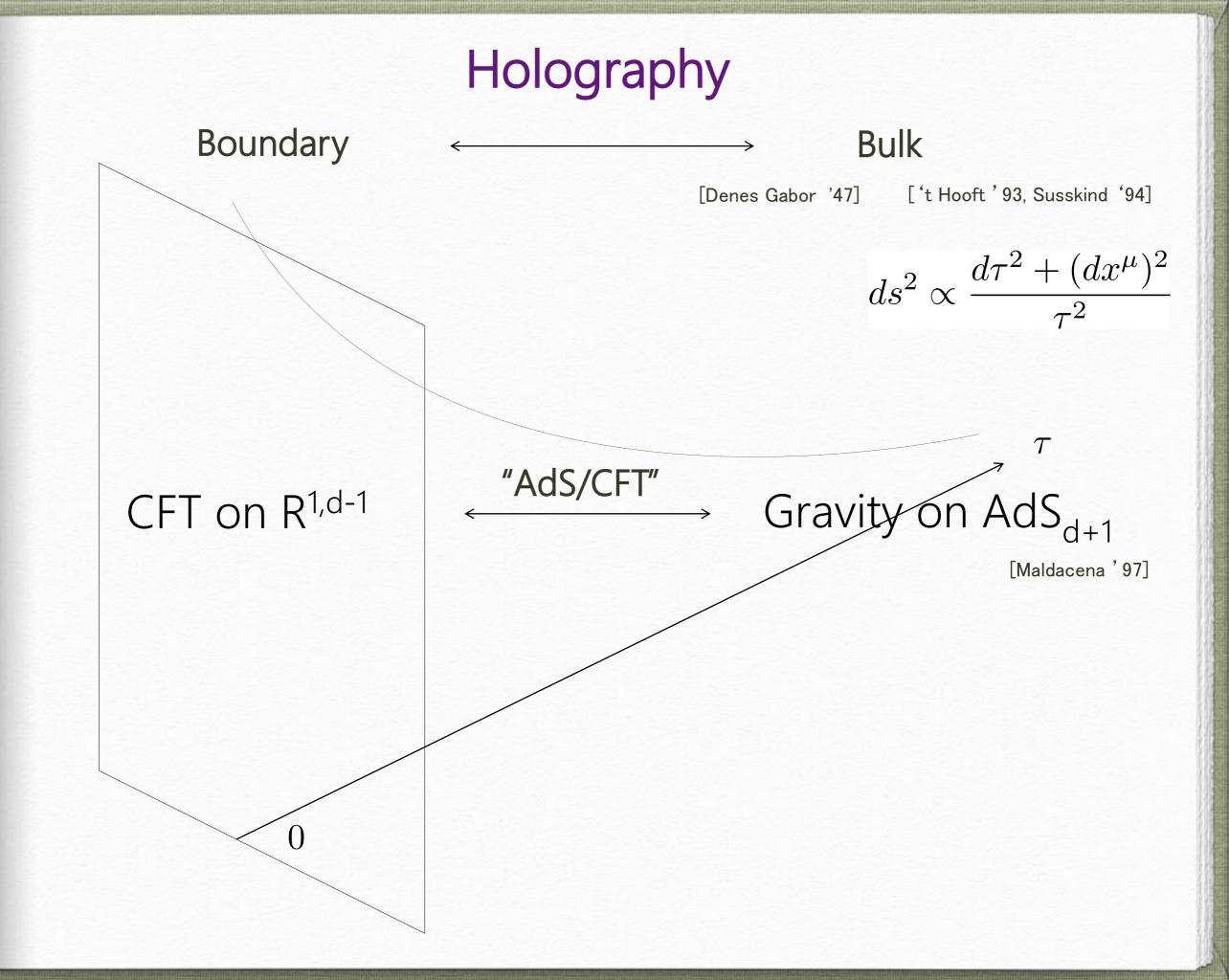
Yukawa Institute for Theoretical Physics

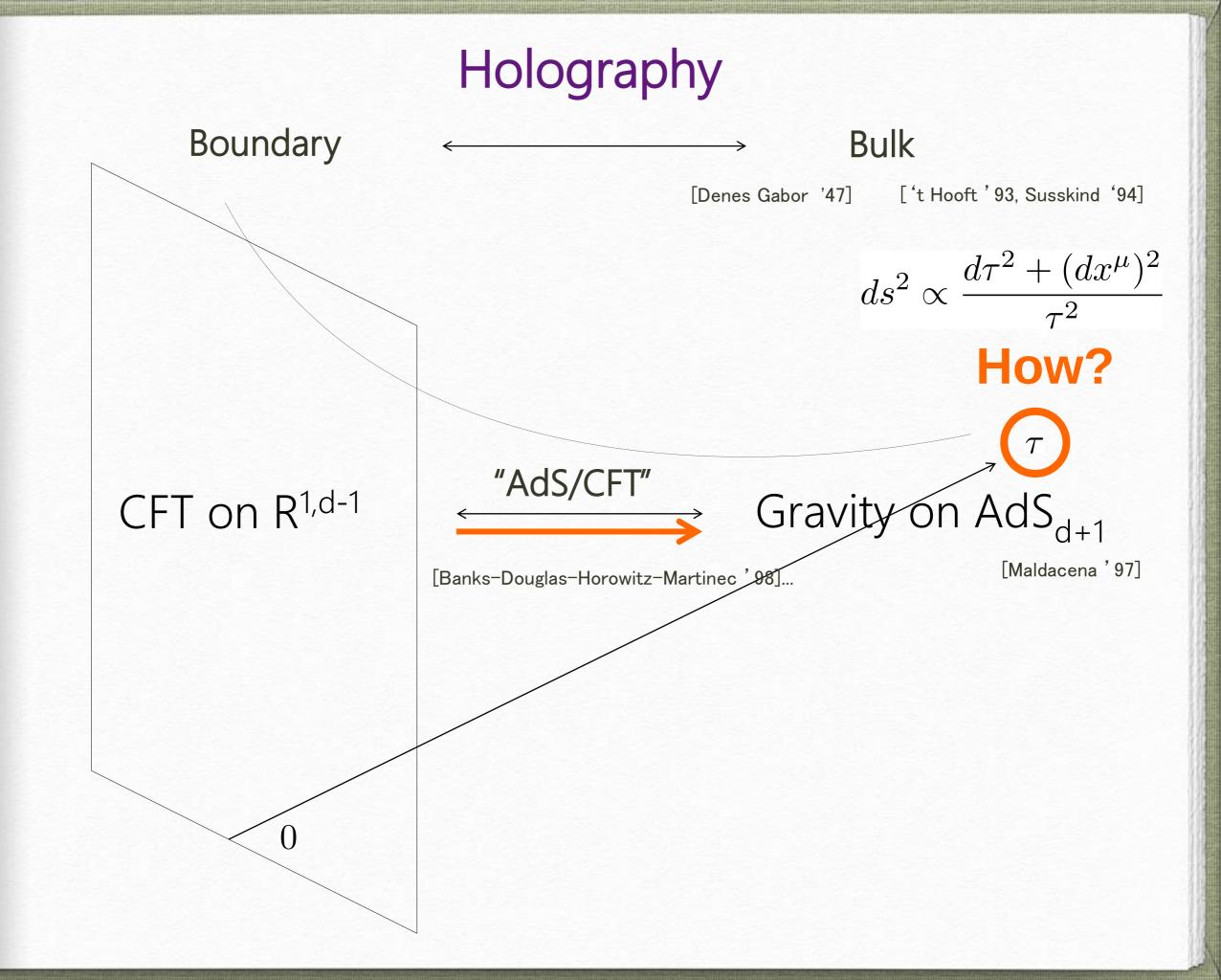


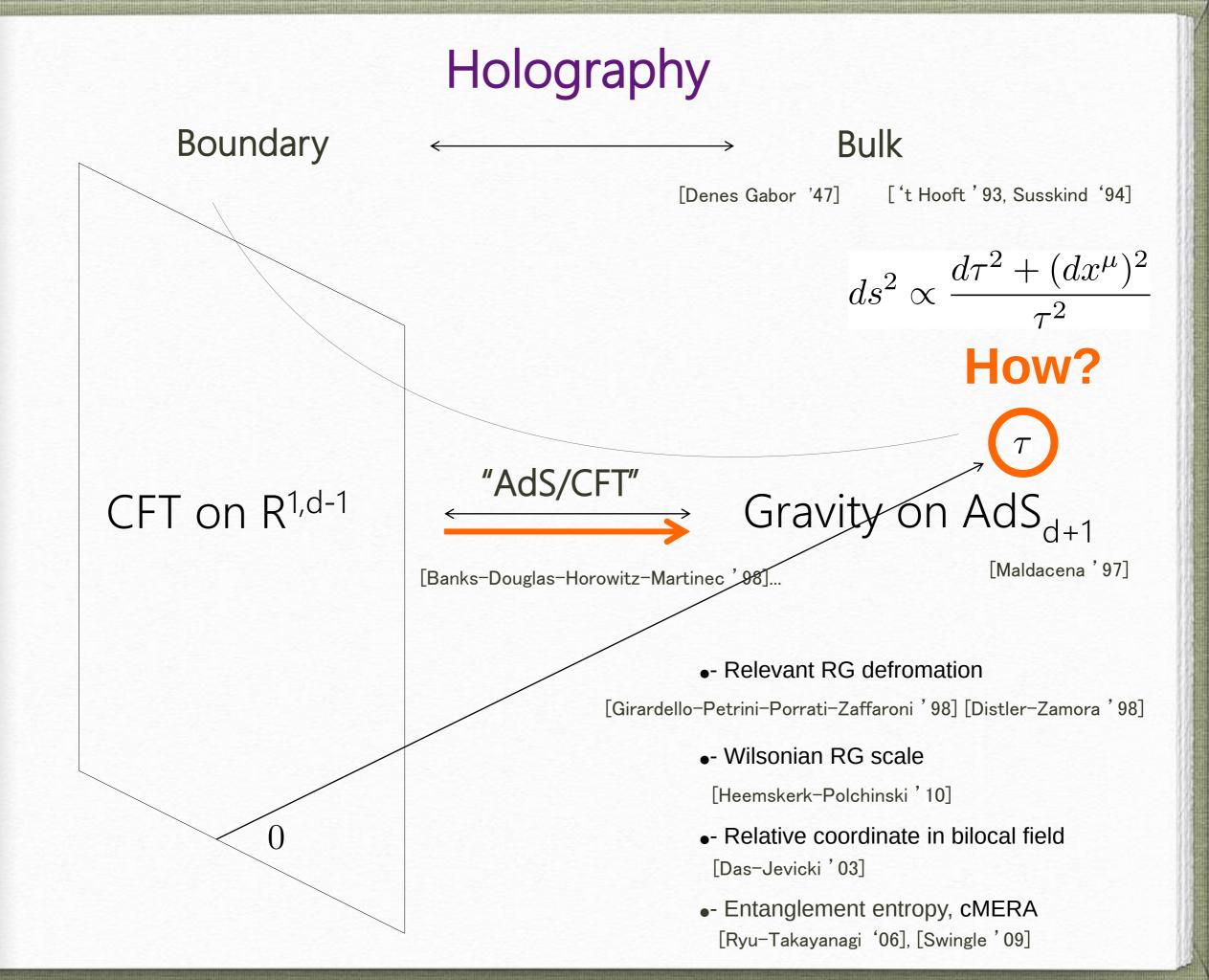
Refs.

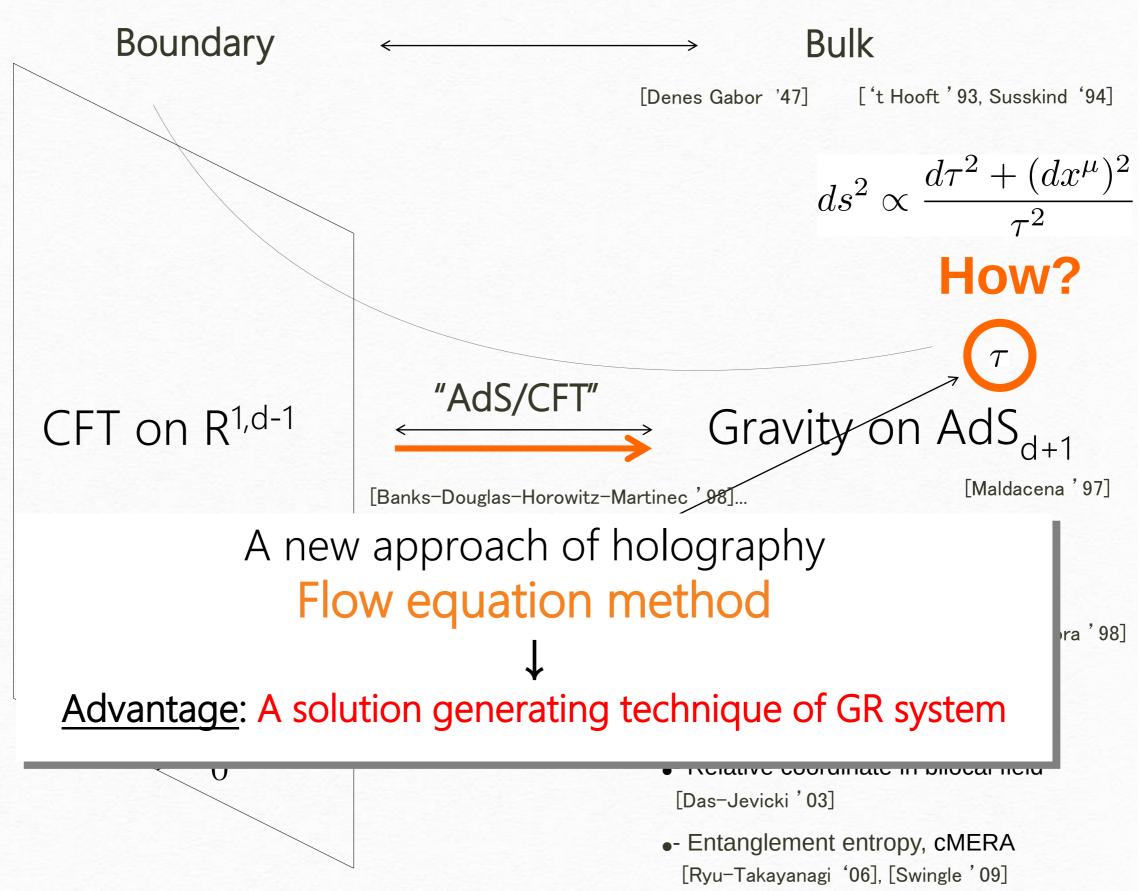
S.Aoki-T.Onogi-SY arXiv:2004.03779 [hep-th] S.Aoki-T.Onogi-SY arXiv:2005.13233 [gr-qc]











Plan

- ✓ 1. Introduction
 - 2. Flow equation and bulk construction
 - 3. Holographic geometry at finite T
 - 4. Conserved charge in GR
 - 5. Summary

1. was introduced to help numerics of lattice QCD. cf. def of stress energy tensor

[Albanese et al. (APE) '87] [Narayanan-Neuberger '06] [Luscher '10,'13]

2. describes a non-local course-graining of an operator.

1. was introduced to help numerics of lattice QCD. cf. def of stress energy tensor

[Albanese et al. (APE) '87] [Narayanan-Neuberger '06] [Luscher '10,'13]

 $\langle \phi(x_1)\phi(x_2)\rangle = \frac{1}{x_{12}^{2\Delta}}$ $x_{12} := x_1 - x_2$

2. describes a non-local course-graining of an operator.

Consider a CFT_d which contains a primary scalar ϕ

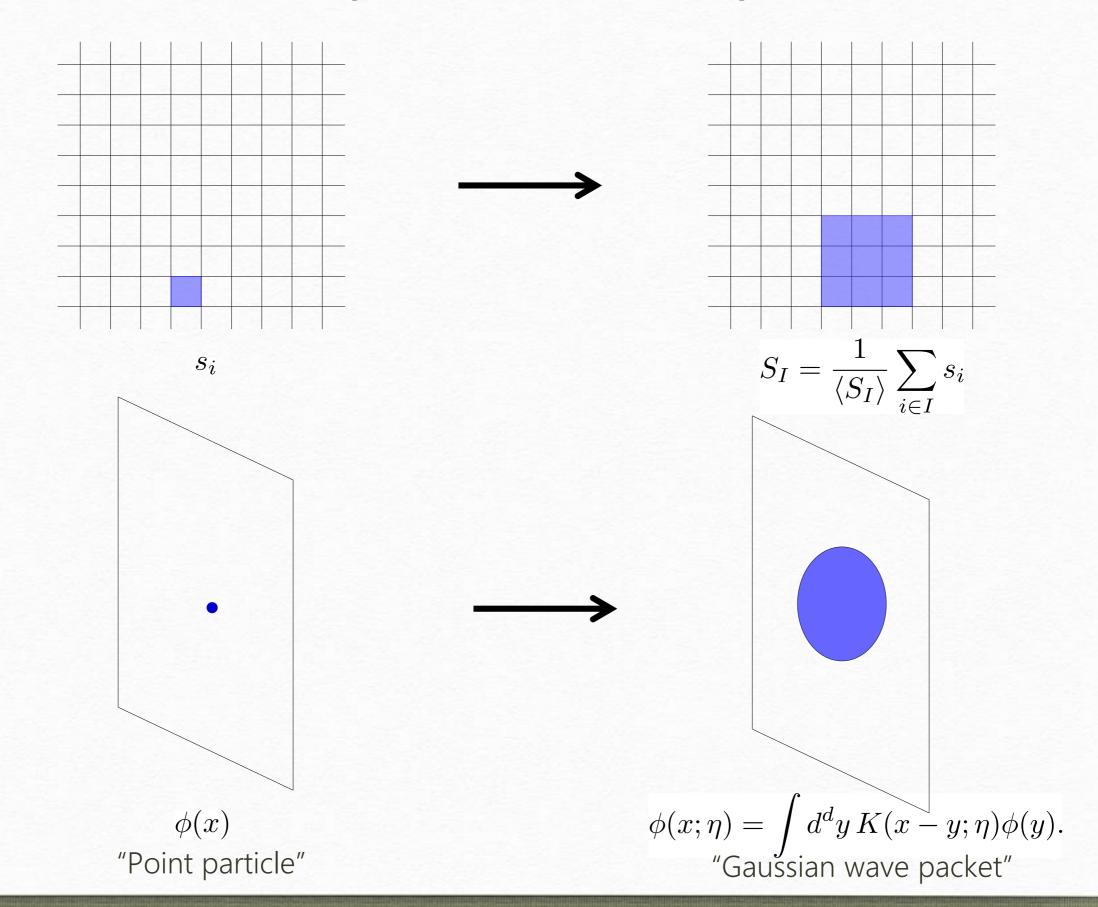
Free flow equation

$$\frac{\partial \phi(x;\eta)}{\partial \eta} = \partial^2 \phi(x;\eta). \quad \phi(x;0) = \phi(x)$$

1. was introduced to help numerics of lattice QCD.cf. def of stress energy tensor[Albanese et al. (APE) '87] [Narayanan-Neuberger '06] [Luscher '10,'13]2. describes a non-local course-graining of an operator.Consider a CFT_d which contains a primary scalar φ $\langle \phi(x_1)\phi(x_2) \rangle = \frac{1}{x_{12}^{2\Delta}}$ Free flow equation $x_{12} := x_1 - x_2$ $\frac{\partial \phi(x;\eta)}{\partial \eta} = \partial^2 \phi(x;\eta).$ $\phi(x;\eta) = \int d^d y K(x-y;\eta)\phi(y).$ $K(x-y;\eta) = \frac{e^{-(x-y)^2/4\eta}}{(4\pi\eta)^{d/2}}$

➡ Reminiscent of the block spin transformation!?

Block spin v.s. Flowed operator



1. was introduced to help numerics of lattice QCD. cf. def of stress energy tensor [Albanese et al. (APE) '87] [Narayanan-Neuberger '06] [Luscher '10,'13] 2. describes a non-local course-graining of an operator. $\langle \phi(x_1)\phi(x_2)\rangle = \frac{1}{x_{12}^{2\Delta}}$ Consider a CFT_d which contains a primary scalar ϕ $x_{12} := x_1 - x_2$ Free flow equation $\frac{\partial \phi(x;\eta)}{\partial n} = \partial^2 \phi(x;\eta). \quad \phi(x;0) = \phi(x)$ $\phi(x;\eta) = \int d^d y \, K(x-y;\eta) \phi(y). \qquad K(x-y;\eta) = \frac{e^{-(x-y)^2/4\eta}}{(4\pi n)^{d/2}}$ The solution: Reminiscent of the block spin transformation!? <u>Claim</u>: Contact singularity in 2pt function is resolved. $\langle \phi(x_1;\eta_1)\phi(x_2;\eta_2)\rangle = \frac{1}{n^{\Delta}_{\perp}}F(\frac{x_{12}^2}{n_{\perp}};1)$ $\eta_+ := \eta_1 + \eta_2$ $F(v;1) = \frac{1}{(4\pi)^{\frac{d}{2}}} \int_0^1 du (1-u)^{d/2 - \Delta - 1} e^{-vu/4} u^{\Delta - 1} \qquad \frac{d-2}{2} \le \Delta < \frac{d-1}{2}$

Construction of holographic space

[Aoki-Kikuchi-Onogi '15]

[Aoki-Balog-Onogi-Weisz '16,'17]

[Aoki-SY '17]

Metric operator and holographic metric

[Aoki-Kikuchi-Onogi '15] [Aoki-Balog-Onogi-Weisz '16,'17]

<u>Def.</u> (Normalized operator)

$$\sigma^{a}(x;\eta) := \frac{\phi^{a}(x;t)}{\sqrt{\langle \phi^{b}(x;\eta)^{2} \rangle}}$$

$$\left\langle \sigma^a(x;\eta)\sigma^b(x;\eta)\right\rangle = \frac{1}{n}\delta^{ab}$$

NOTE: This is well-defined due to the absence of the contact singularity.

Metric operator and holographic metric

[Aoki-Kikuchi-Onogi '15] [Aoki-Balog-Onogi-Weisz '16,'17]

Def. (Normalized operator)

$$\sigma^{a}(x;\eta) := \frac{\phi^{a}(x;t)}{\sqrt{\langle \phi^{b}(x;\eta)^{2} \rangle}} \qquad \qquad \left\langle \sigma^{a}(x;\eta)\sigma^{b}(x;\eta) \right\rangle = \frac{1}{n}\delta^{ab}$$

NOTE: This is well-defined due to the absence of the contact singularity.

 $\begin{array}{ll} \underline{\text{Def.}} & (\text{Metric operator}) \\ \\ \hat{g}_{AB}(x;\eta) := \lim_{(x',\eta') \to (x,\eta)} \frac{\partial}{\partial X^A} \sigma^a(x;\eta) \frac{\partial}{\partial X'^B} \sigma^a(x';\eta'), \\ \\ \\ & (X^A) = (x^{\mu},\tau) \text{ with } \tau := \sqrt{\eta/\alpha} \end{array}$

NOTE:

1. An induced metric can be interpreted as the information metric.

[Aoki-SY '17]

2. The metric operator is singlet under the transformation related to the index.

Metric operator and holographic metric

[Aoki-Kikuchi-Onogi '15] [Aoki-Balog-Onogi-Weisz '16,'17]

Def. (Normalized operator)

 σ^a

$$(x;\eta) := \frac{\phi^a(x;t)}{\sqrt{\langle \phi^b(x;\eta)^2 \rangle}} \qquad \qquad \left\langle \sigma^a(x;\eta) \sigma^b(x;\eta) \right\rangle = \frac{1}{n} \delta^{ab}$$

NOTE: This is well-defined due to the absence of the contact singularity.

 $\begin{array}{ll} \underline{\text{Def.}} & (\text{Metric operator}) \\ \\ \hat{g}_{AB}(x;\eta) := \lim_{(x',\eta') \to (x,\eta)} \frac{\partial}{\partial X^A} \sigma^a(x;\eta) \frac{\partial}{\partial X'^B} \sigma^a(x';\eta'), \\ \\ \\ (X^A) = (x^{\mu},\tau) \text{ with } \tau := \sqrt{\eta/\alpha} \end{array}$

NOTE:

Def.

1. An induced metric can be interpreted as the information metric.

[Aoki-SY '17]

2. The metric operator is singlet under the transformation related to the index.

(Metric of the holographic space)

 $g_{AB}(X) := \langle \hat{g}_{AB}(x;\eta) \rangle,$

Explicit computation of holographic metric

Let us compute the induced metric in this free O(n) vector model.

$$\langle \sigma(x_1;\eta_1)\sigma(x_2;\eta_2)\rangle = \left(\frac{2\sqrt{\eta_1\eta_2}}{\eta_+}\right)^{\Delta} F\left(\frac{x_{12}^2}{\eta_+}\right) \qquad F(u) := F_0(u;1)/F_0(0;1)$$

Explicit computation of holographic metric

Let us compute the induced metric in this free O(n) vector model.

$$\langle \sigma(x_{1};\eta_{1})\sigma(x_{2};\eta_{2})\rangle = \left(\frac{2\sqrt{\eta_{1}\eta_{2}}}{\eta_{+}}\right)^{\Delta} F\left(\frac{x_{12}^{2}}{\eta_{+}}\right) \qquad F(u) := F_{0}(u;1)/F_{0}(0;1)$$

$$g_{\eta\eta}(X) = \lim \partial_{\eta}\partial_{\eta'} \left(\frac{2\sqrt{\eta_{1}\eta_{2}}}{\eta_{+}}\right)^{\Delta} F(\frac{x_{12}^{2}}{\eta_{+}}) = 2^{\Delta}\frac{\Delta}{\eta^{2}2^{\Delta+2}} = \frac{\Delta}{4\eta^{2}}$$

$$g_{ij}(X) = \lim \partial_{i}\partial_{j'} \left(\frac{2\sqrt{\eta_{1}\eta_{2}}}{\eta_{+}}\right)^{\Delta} F(\frac{x_{12}^{2}}{\eta_{+}}) = \lim \partial_{j'} \left(\frac{2\sqrt{\eta_{1}\eta_{2}}}{\eta_{+}}\right)^{\Delta} \frac{2x_{12}^{i}}{\eta_{+}} F'(\frac{x_{12}^{2}}{\eta_{+}})$$

$$= \lim \left(\frac{2\sqrt{\eta_{1}\eta_{2}}}{\eta_{+}}\right)^{\Delta} \frac{-2\delta_{ij}}{\eta_{+}} F'(\frac{x_{12}^{2}}{\eta_{+}}) = \frac{-\delta_{ij}}{\eta} F'(0)$$

$$\partial_{\eta} \frac{\sqrt{4\eta\eta'}^{\Delta}}{\eta_{+}^{\Delta}} = \frac{\sqrt{4\eta\eta'}^{\Delta}}{\eta_{+}^{\Delta+1}} \frac{\Delta}{2} \left(-1 + \frac{\eta'}{\eta}\right) \to 0,$$

$$\partial_{\eta'} \partial_{\eta} \frac{\sqrt{4\eta\eta'}^{\Delta}}{\eta_{+}^{\Delta}} \to \frac{\sqrt{4\eta\eta'}^{\Delta}}{\eta_{+}^{\Delta+1}} \frac{\Delta}{2} \frac{1}{\eta} \to \frac{\Delta}{2} \frac{1}{2\eta^{2}}$$

Explicit computation of holographic metric

Let us compute the induced metric in this free O(n) vector model.

$$\langle \sigma(x_{1};\eta_{1})\sigma(x_{2};\eta_{2})\rangle = \left(\frac{2\sqrt{\eta_{1}\eta_{2}}}{\eta_{+}}\right)^{\Delta} F\left(\frac{x_{12}^{2}}{\eta_{+}}\right) \qquad F(u) := F_{0}(u;1)/F_{0}(0;1)$$

$$g_{\eta\eta}(X) = \lim \partial_{\eta}\partial_{\eta'} \left(\frac{2\sqrt{\eta_{1}\eta_{2}}}{\eta_{+}}\right)^{\Delta} F(\frac{x_{12}^{2}}{\eta_{+}}) = 2^{\Delta} \frac{\Delta}{\eta^{2}2^{\Delta+2}} = \frac{\Delta}{4\eta^{2}}$$

$$g_{ij}(X) = \lim \partial_{i}\partial_{j'} \left(\frac{2\sqrt{\eta_{1}\eta_{2}}}{\eta_{+}}\right)^{\Delta} F(\frac{x_{12}^{2}}{\eta_{+}}) = \lim \partial_{j'} \left(\frac{2\sqrt{\eta_{1}\eta_{2}}}{\eta_{+}}\right)^{\Delta} \frac{2x_{12}^{i}}{\eta_{+}} F'(\frac{x_{12}^{2}}{\eta_{+}})$$

$$= \lim \left(\frac{2\sqrt{\eta_{1}\eta_{2}}}{\eta_{+}}\right)^{\Delta} \frac{-2\delta_{ij}}{\eta_{+}} F'(\frac{x_{12}^{2}}{\eta_{+}}) = \frac{-\delta_{ij}}{\eta} F'(0)$$

$$\partial_{\eta} \frac{\sqrt{4\eta\eta'}^{\Delta}}{\eta_{+}^{\Delta}} = \frac{\sqrt{4\eta\eta'}^{\Delta}}{\eta_{+}^{\Delta+1}} \frac{\Delta}{2} \left(-1 + \frac{\eta'}{\eta}\right) \to 0,$$

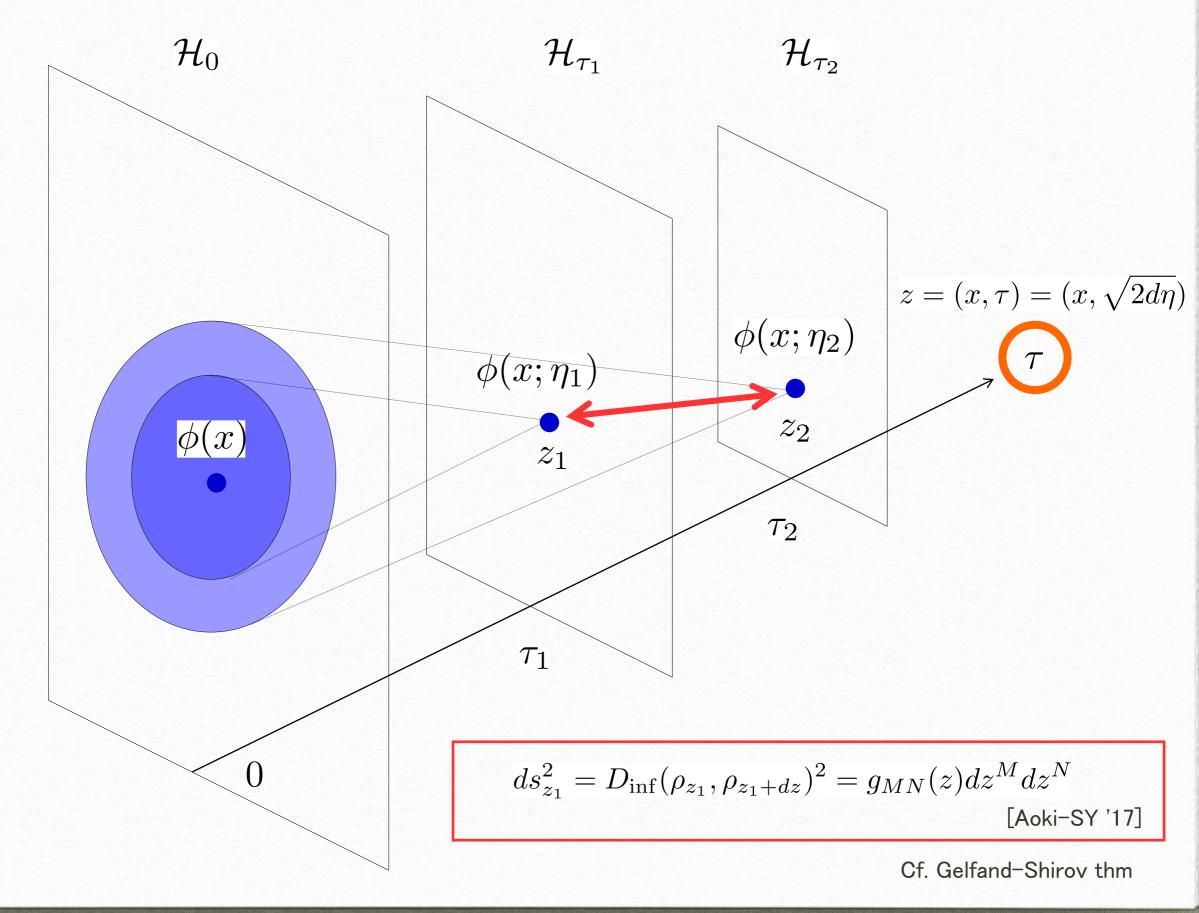
$$\partial_{\eta'} \partial_{\eta} \frac{\sqrt{4\eta\eta'}^{\Delta}}{\eta_{+}^{\Delta}} \to \frac{\sqrt{4\eta\eta'}^{\Delta}}{\eta_{+}^{\Delta+1}} \frac{\Delta}{2} \frac{1}{\eta} \to \frac{\Delta}{2} \frac{1}{2\eta^{2}}$$

$$\Rightarrow ds^2 = \frac{\Delta}{4\eta^2} d\eta^2 + F'(0) \frac{-1}{\eta} (dx^i)^2 = \frac{\Delta}{z^2} dz^2 + F'(0) \frac{-1}{\alpha z^2} (dx^i)^2 = \Delta (\frac{dz^2 + (dx^i)^2}{z^2})$$

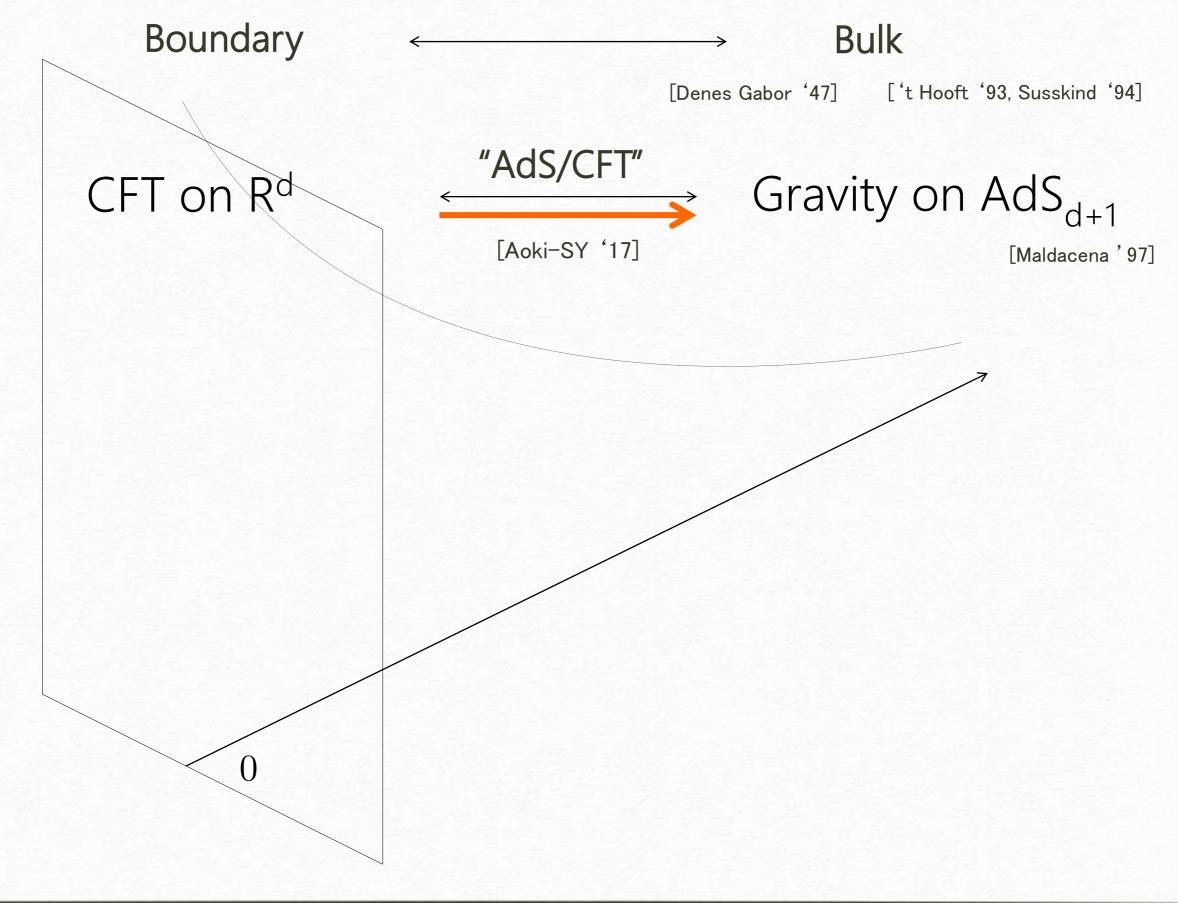
$$\eta = \alpha z^2 \text{ with } \alpha = -\frac{F'(0)}{\Delta} = 1/2d$$

$$AdS \text{ metric!!} \quad L^2_{AdS} = \Delta = \frac{d-2}{2}$$

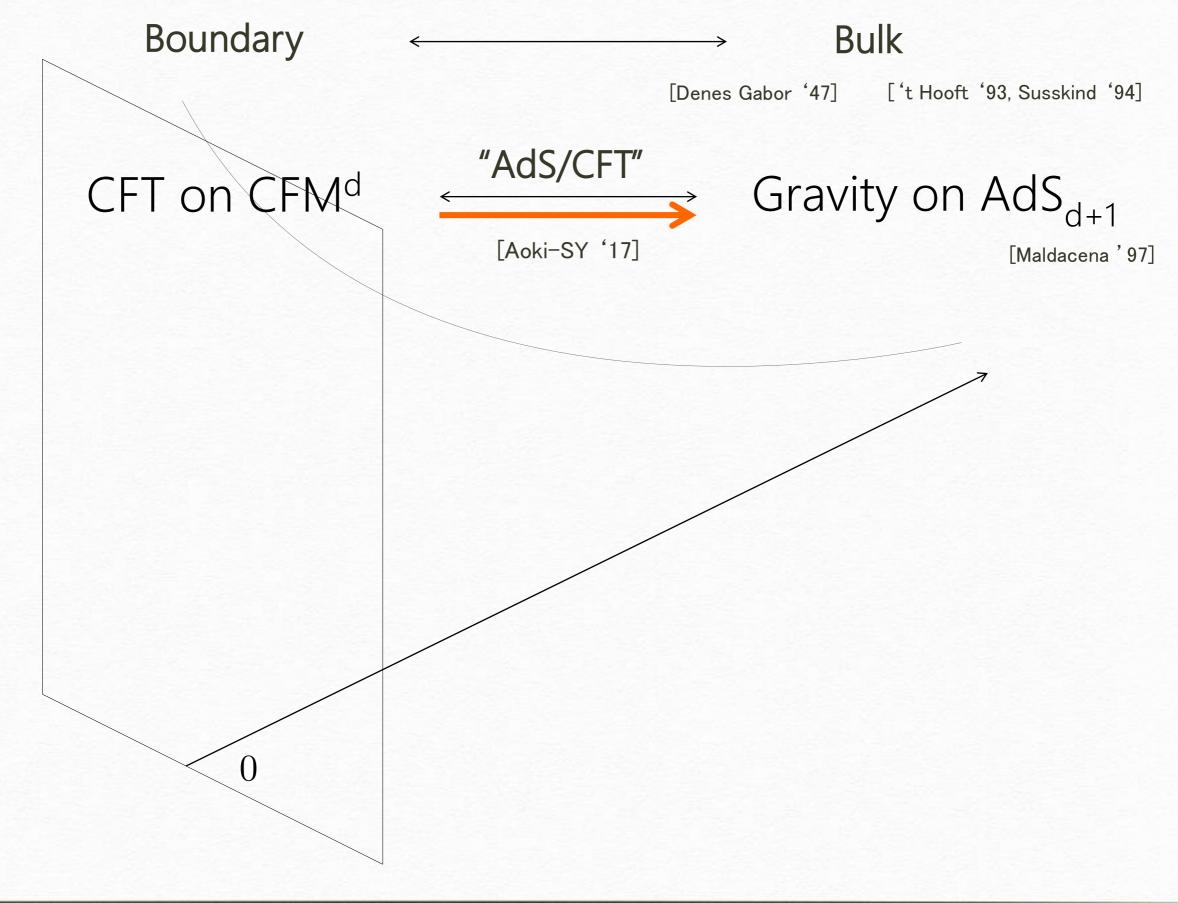
Smearing \rightarrow Extra direction

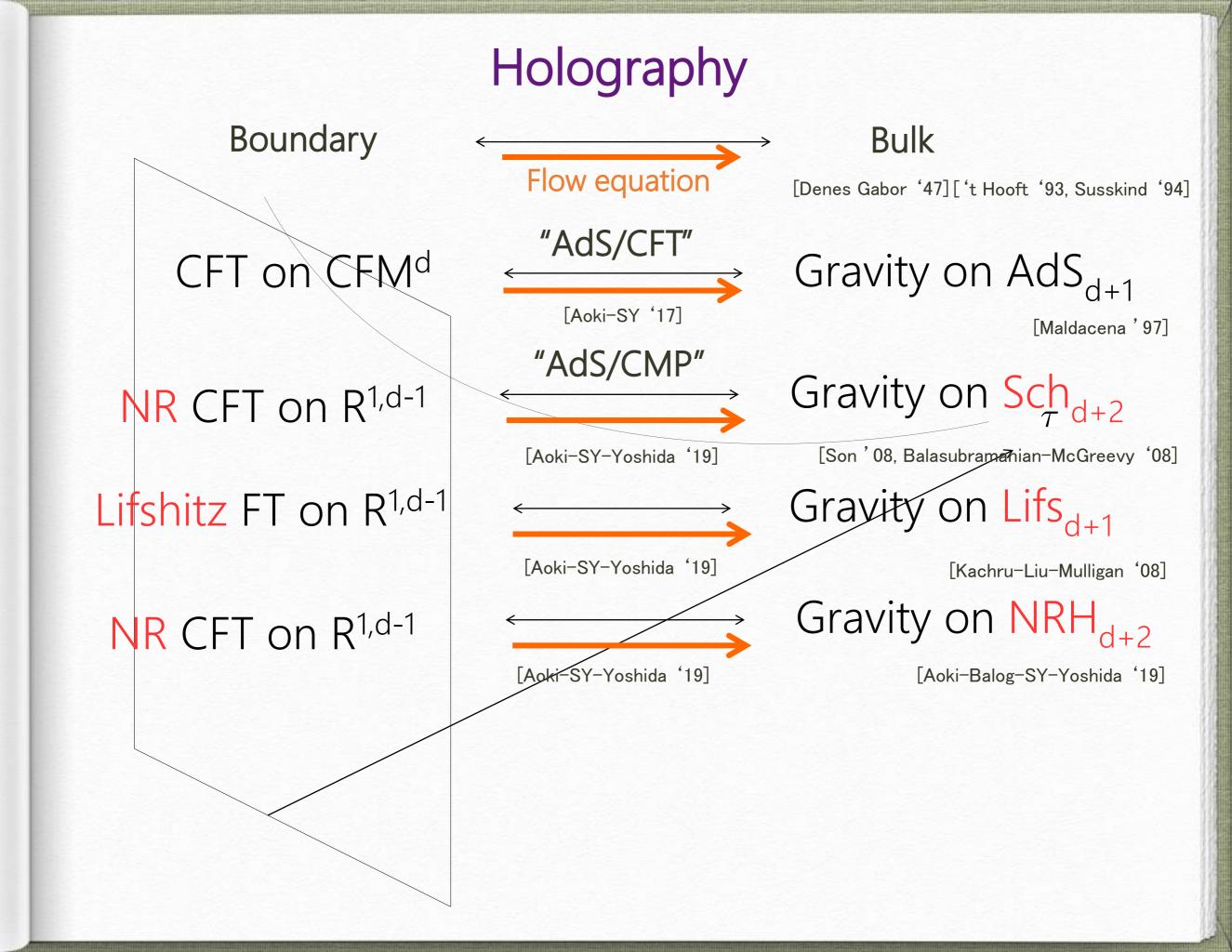


Holography

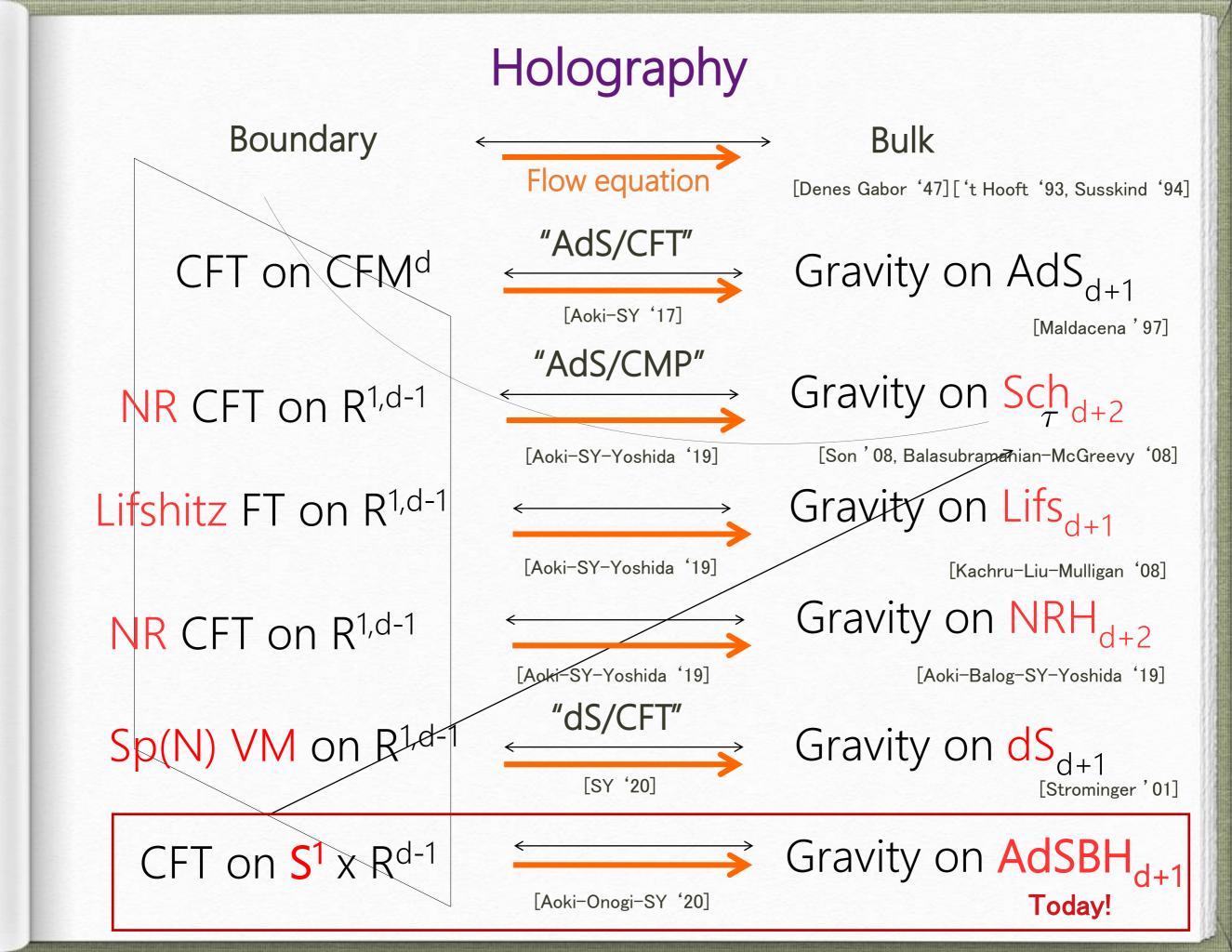


Holography









Plan

✓ 1. Introduction

2. Flow equation and bulk construction

3. Holographic geometry at finite T

4. Conserved charge in GR

5. Summary

Expectation

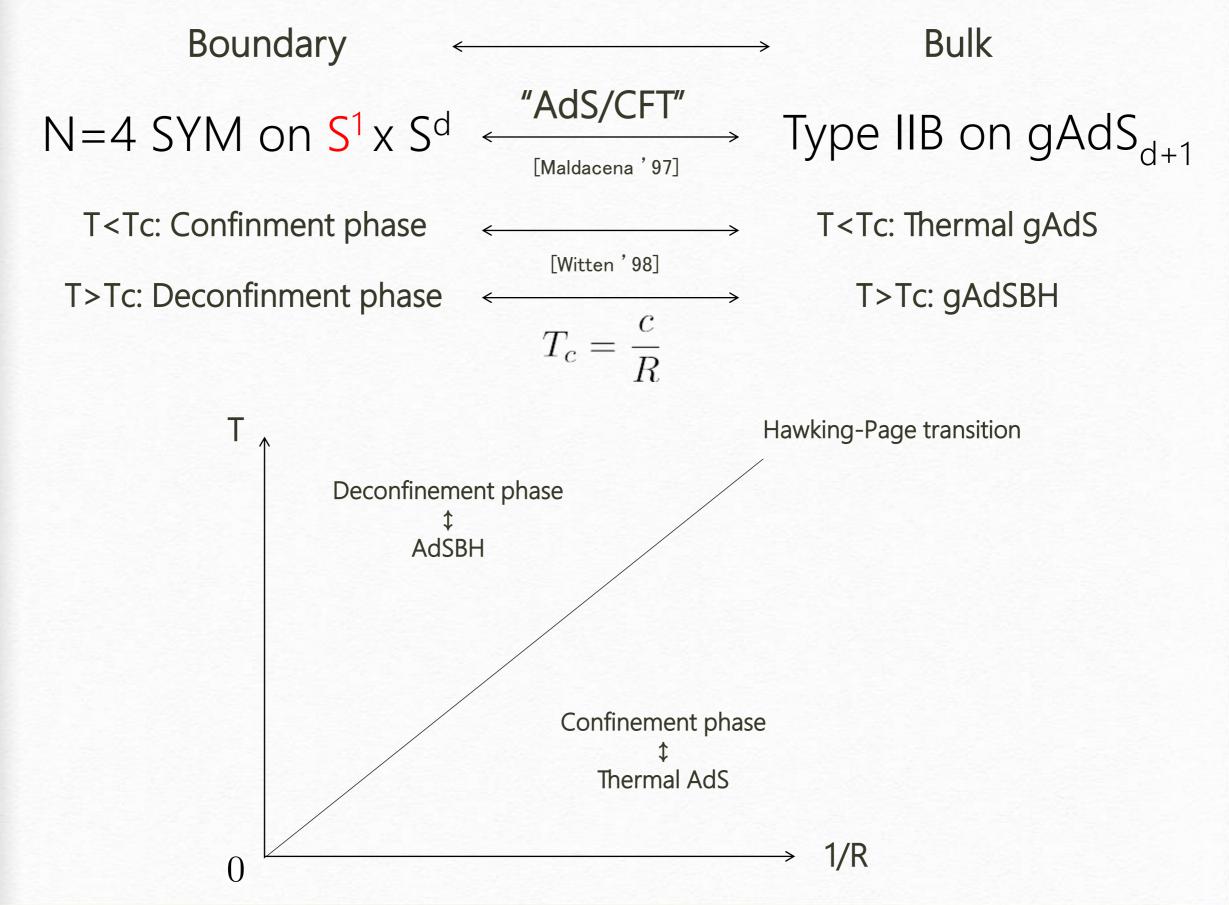
Confine/Deconfine v.s. Hawking-Page

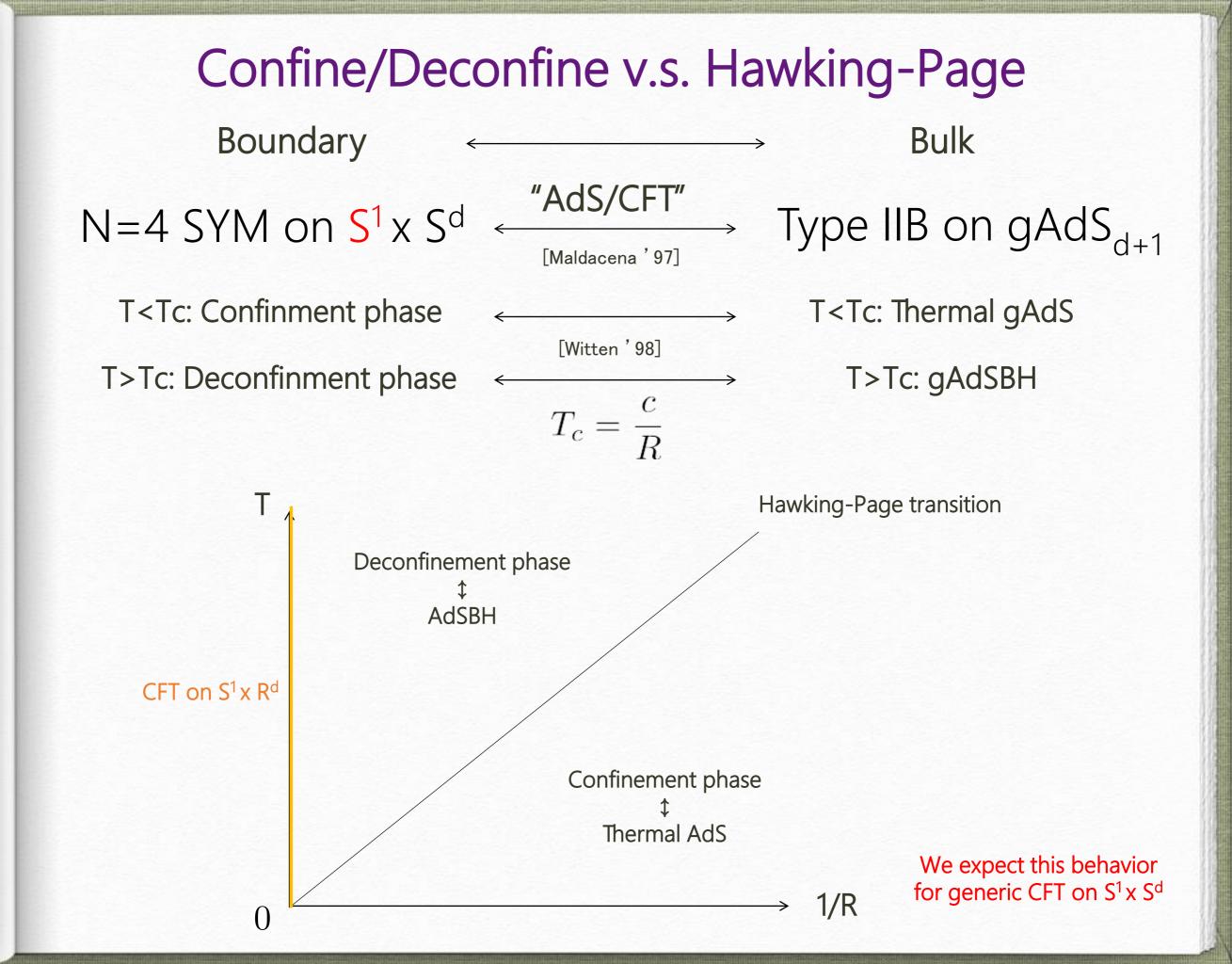
Boundary
$$\leftarrow$$
 Bulk
N=4 SYM on R¹x S^d \leftarrow Maldacena '97] \rightarrow Type IIB on gAdS_{d+1}

Confine/Deconfine v.s. Hawking-Page

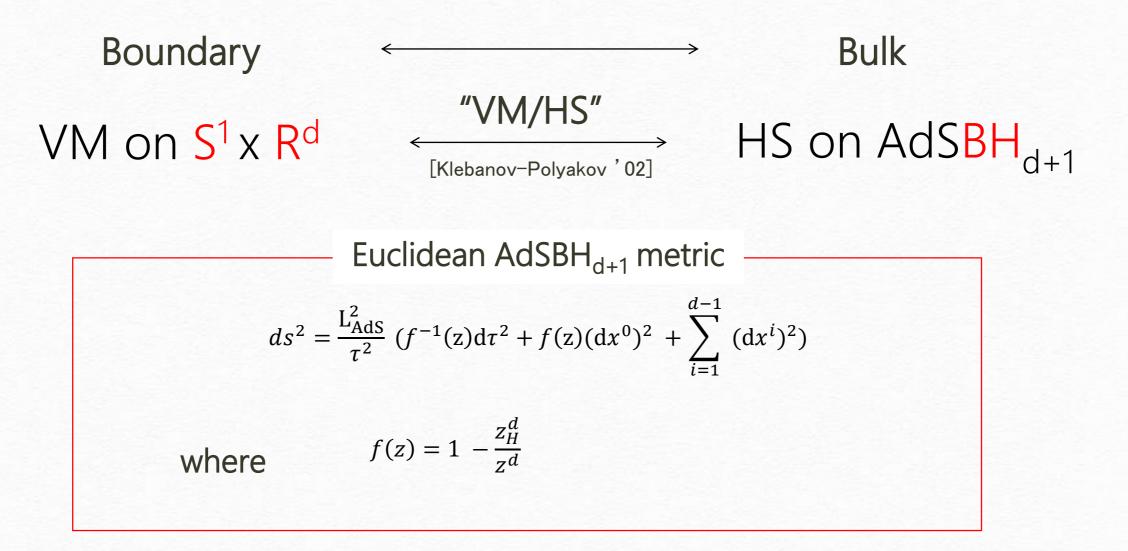
Boundary \leftarrow Bulk N=4 SYM on S¹ x S^d \leftarrow $\stackrel{"AdS/CFT"}{[Maldacena '97]}$ Type IIB on gAdS_{d+1} T<Tc: Confinment phase \leftarrow T<Tc: Thermal gAdS T>Tc: Deconfinment phase \leftarrow $T_c = \frac{c}{R}$ T>Tc: gAdSBH

Confine/Deconfine v.s. Hawking-Page

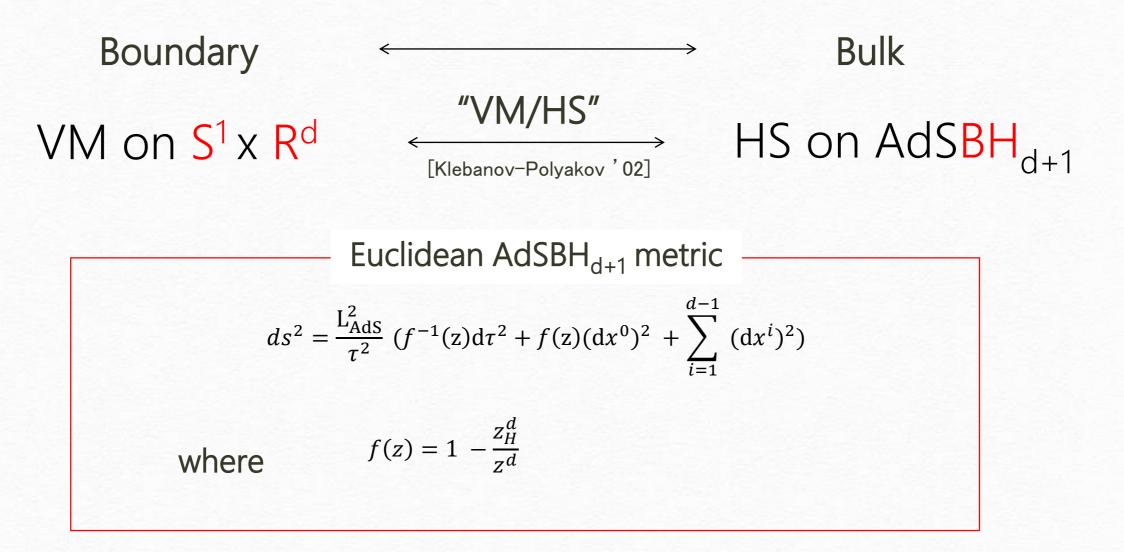




Vector-Model/Higher-Spin duality



Vector-Model/Higher-Spin duality



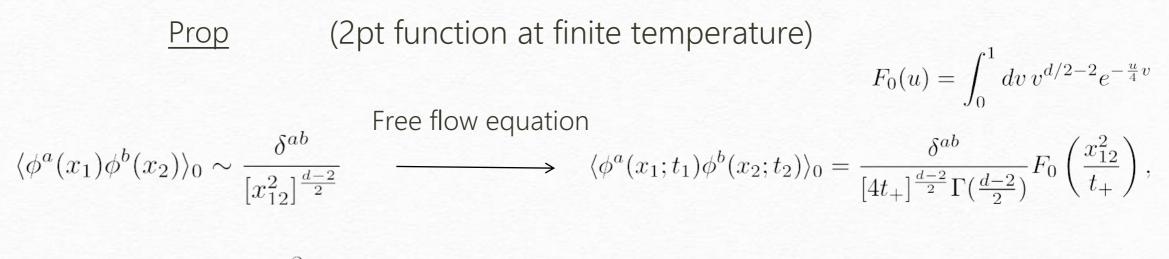
Question

Can we reproduce this BH geometry from a free VM on S¹ x R^d?

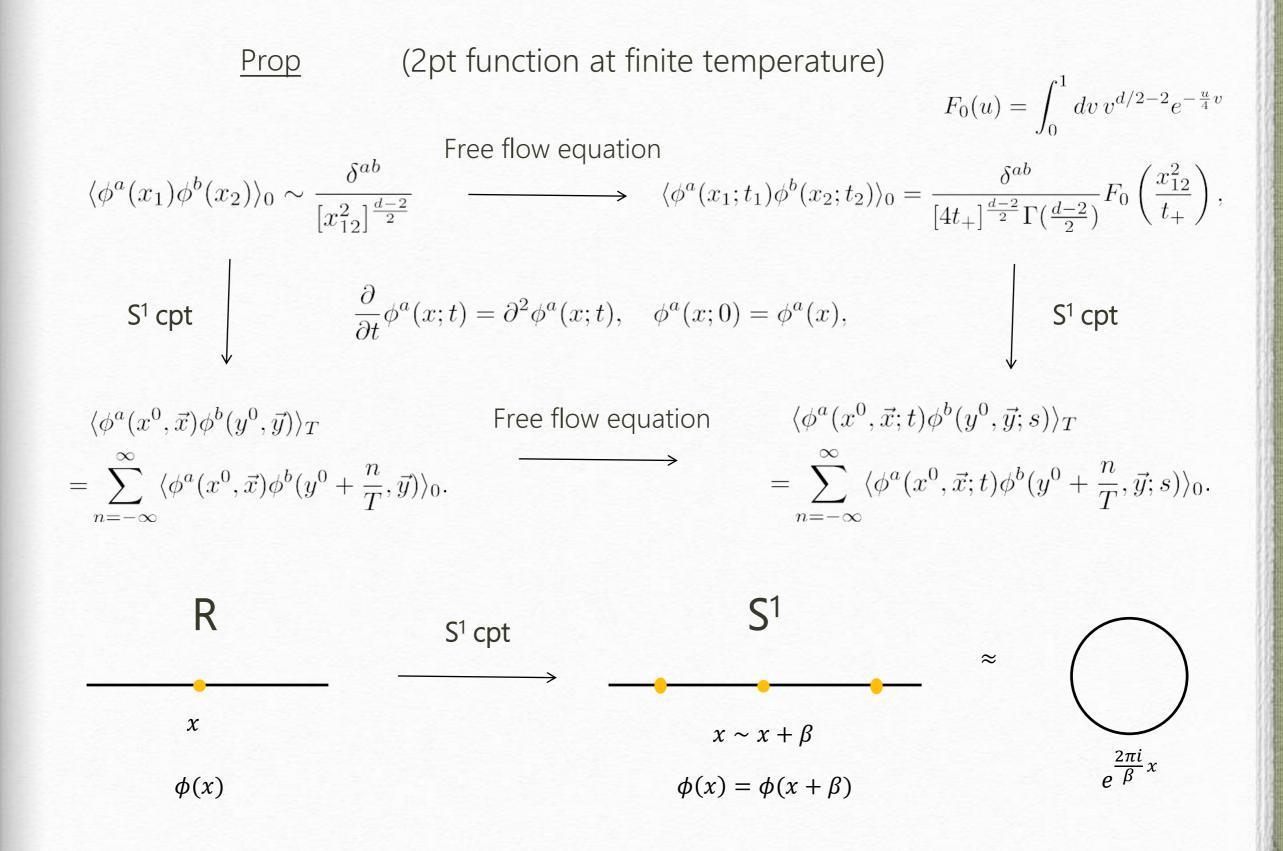
Free scalars at finite T and holographic space

[Aoki-Onogi-SY '20]

Free real scalars on S¹ x R^{d-1}



$$\frac{\partial}{\partial t}\phi^a(x;t) = \partial^2\phi^a(x;t), \quad \phi^a(x;0) = \phi^a(x),$$



(Normalized operator)

Def.

$$\sigma^a(x^0, \vec{x}; t) = \frac{\phi^a(x^0, \vec{x}; t)}{\sqrt{\langle \phi^2(x^0, \vec{x}; t) \rangle_0}},$$

<u>Def.</u> (Metric of the holographic space) $g_{MN}(X) = \sum_{a=1}^{N} \langle \partial_M \sigma^a(x^0, \vec{x}; t) \partial_N \sigma^a(x^0, \vec{x}; t) \rangle_T,$

Result

$$\begin{split} g_{00}(X) = & \frac{L_{\text{AdS}}^2}{\tau^2} \frac{d}{2} \left[F(d,z) - z \frac{d}{dz} F(d,z) \right], \\ g_{\tau\tau}(X) = & \frac{L_{\text{AdS}}^2}{\tau^2} \left[\frac{d-2}{2} F(d-2,z) - \frac{1}{2} z \frac{d}{dz} F(d-2,z) + \frac{1}{4} \left(z \frac{d}{dz} \right)^2 F(d-2,z) \right], \\ g_{ij}(X) = & \delta_{ij} \frac{L_{\text{AdS}}^2}{\tau^2} \frac{d}{2} F(d,z), \end{split}$$

where $F(s,w) = \int_0^1 dv \, v^{s/2-1} \, \theta_3\left(e^{-\frac{dv}{4z^2}}\right), \quad \theta_3(q) := 1 + 2\sum_{n=1}^\infty q^{\frac{1}{2}n^2} \qquad z = T\tau = T\sqrt{2dt}$

(Asymptotic behavior)

$$g_{00}(X) = \frac{L_{\text{AdS}}^2}{\tau^2} f_0(z), \quad g_{\tau\tau}(X) = \frac{L_{\text{AdS}}^2}{\tau^2} f_\tau(z), \quad g_{ij}(X) = \delta_{ij} \frac{L_{\text{AdS}}^2}{\tau^2} f_i(z).$$

In the small z region, we have

$$f_{0}(z) = 1 - z^{d}(d-1)A_{d} - \frac{d}{2}\left(1 - z\frac{\partial}{\partial z}\right)\delta F_{\text{UV}}(d, z),$$

$$f_{\tau}(z) = 1 + z^{d-2}\frac{(d-2)}{2}A_{d-2} - \left(\frac{(d-2)}{2} - \frac{1}{2}z\frac{\partial}{\partial z} + \frac{1}{4}\left(z\frac{\partial}{\partial z}\right)^{2}\right)\delta F_{\text{UV}}(d-2, z),$$

$$f_{i}(z) = 1 + z^{d}A_{d} - \frac{d}{2}\delta F_{\text{UV}}(d, z),$$

$$A_{s} := (4/d)^{\frac{s}{2}}s\Gamma(s/2)\zeta(s)$$

In the large z region, we obtain

$$\begin{split} f_0(z) &= \frac{d}{2} \left(1 - z \frac{\partial}{\partial z} \right) \delta F_{\rm IR}(d, z) \\ f_\tau(z) &= z \sqrt{\frac{4\pi}{d}} \left(\frac{2d - 5}{2d - 6} \right) + \frac{1}{2} \left((d - 2) - z \frac{\partial}{\partial z} + \frac{1}{2} \left(z \frac{\partial}{\partial z} \right)^2 \right) \delta F_{\rm IR}(d - 2, z), \\ f_i(z) &= z \sqrt{\frac{4\pi}{d}} \left(\frac{d}{d - 1} \right) + \frac{d}{2} \delta F_{\rm IR}(d, z). \end{split}$$

(Asymptotic behavior)

$$g_{00}(X) = \frac{L_{\text{AdS}}^2}{\tau^2} f_0(z), \quad g_{\tau\tau}(X) = \frac{L_{\text{AdS}}^2}{\tau^2} f_\tau(z), \quad g_{ij}(X) = \delta_{ij} \frac{L_{\text{AdS}}^2}{\tau^2} f_i(z).$$

In the small z region, we have

$$f_{0}(z) = 1 - z^{d}(d-1)A_{d} - \frac{d}{2}\left(1 - z\frac{\partial}{\partial z}\right)\delta F_{\mathrm{UV}}(d,z),$$

$$f_{\tau}(z) = 1 + z^{d-2}\frac{(d-2)}{2}A_{d-2} - \left(\frac{(d-2)}{2} - \frac{1}{2}z\frac{\partial}{\partial z} + \frac{1}{4}\left(z\frac{\partial}{\partial z}\right)^{2}\right)\delta F_{\mathrm{UV}}(d-2,z),$$

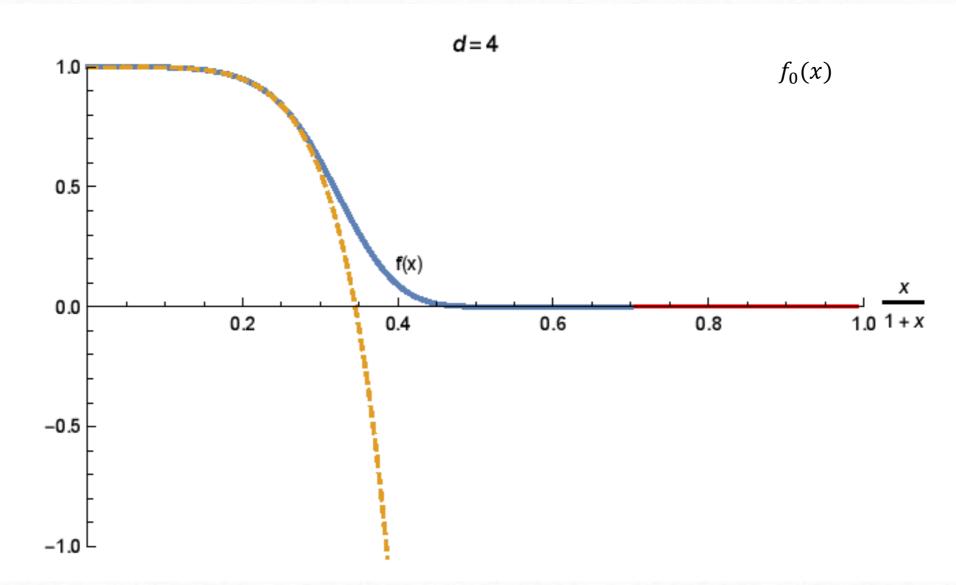
$$f_{i}(z) = 1 + z^{d}A_{d} - \frac{d}{2}\delta F_{\mathrm{UV}}(d,z), \qquad A_{s} := (4/d)^{\frac{s}{2}}s\Gamma(s/2)\zeta(s).$$

➡ Asymptotic AdSBH !!
➡ higher spin matter?

➡ Quantum effect?

In the large z region, we obtain

$$\begin{split} f_0(z) &= \frac{d}{2} \left(1 - z \frac{\partial}{\partial z} \right) \delta F_{\rm IR}(d, z) \\ f_\tau(z) &= z \sqrt{\frac{4\pi}{d}} \left(\frac{2d - 5}{2d - 6} \right) + \frac{1}{2} \left((d - 2) - z \frac{\partial}{\partial z} + \frac{1}{2} \left(z \frac{\partial}{\partial z} \right)^2 \right) \delta F_{\rm IR}(d - 2, z) \\ f_i(z) &= z \sqrt{\frac{4\pi}{d}} \left(\frac{d}{d - 1} \right) + \frac{d}{2} \delta F_{\rm IR}(d, z). \end{split}$$



1. Asymptotic AdSBH!

2. No horizon!!

(Un-smeared information is less and less.)

(Asymptotic behavior of **matter** energy momentum tensor)

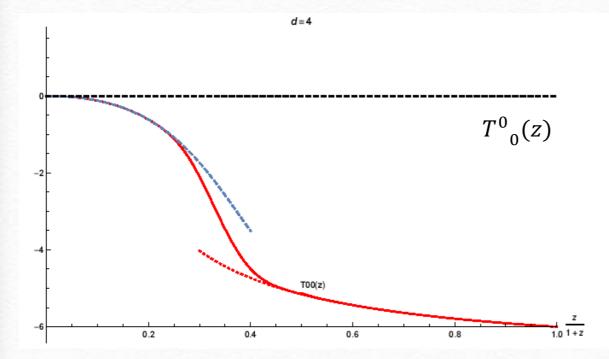
$$T_{AB} = \frac{1}{8\pi G_N} \left(G_{AB} + \Lambda \, g_{AB} \right)$$

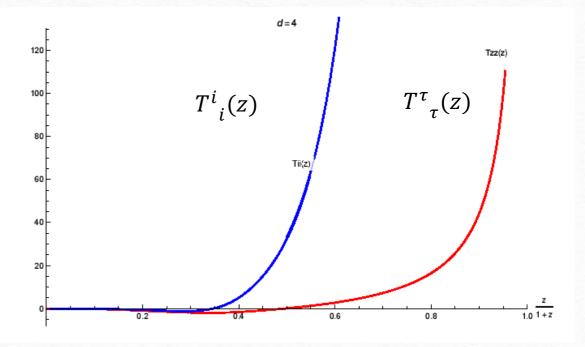
At small z, we have

$$\begin{split} \kappa^2 T^0_{\ 0}(z) &\simeq -(d-1)Bz^{d-2}, \qquad B := \frac{d-2}{2}\frac{A_{d-2}}{L_{\rm AdS}^2}, \\ \kappa^2 T^\tau_{\ \tau}(z) &\simeq -\frac{d(d-1)}{2}Bz^{d-2}, \quad \kappa^2 T^i_{\ j}(z) \simeq -\delta^i_j(d-1)Bz^{d-2}, \end{split}$$

In the large z region, we obtain

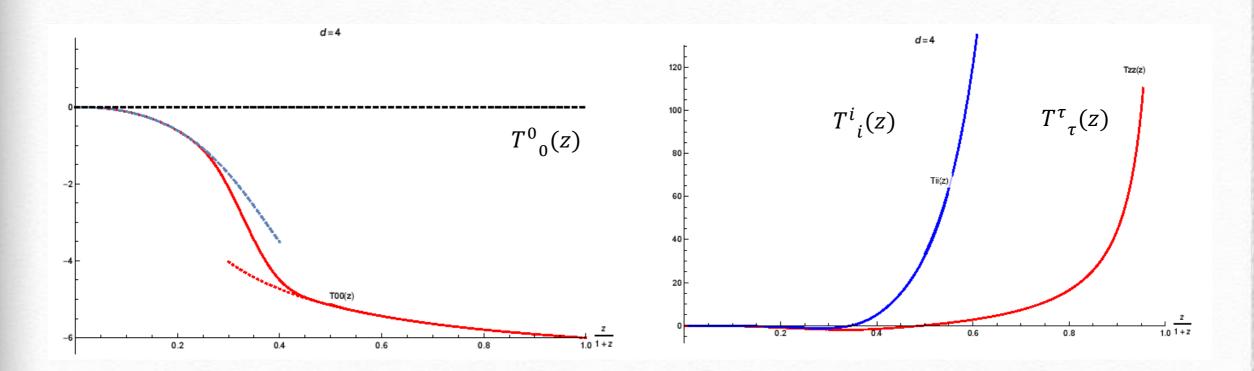
$$\begin{split} \kappa^2 T^0{}_0(z) &\simeq -\frac{1}{L_{\rm AdS}^2} \frac{d(d-1)}{2} \left(1 - \frac{(d-3)(d+2)}{4(2d-5)\sqrt{\pi d}} \frac{1}{z} \right), \\ \kappa^2 T^{\tau}{}_{\tau}(z) &\simeq \frac{1}{L_{\rm AdS}^2} \frac{2(d-1)(d-3)\pi^2}{(2d-5)\sqrt{\pi d}} z, \quad \kappa^2 T^i{}_j(z) \simeq \delta^i_j \frac{1}{L_{\rm AdS}^2} \frac{16(d-3)\pi^4}{d(2d-5)\sqrt{\pi d}} z^3. \end{split}$$





3. No curvature singularity!!

3'. Milder curvature singularity!!

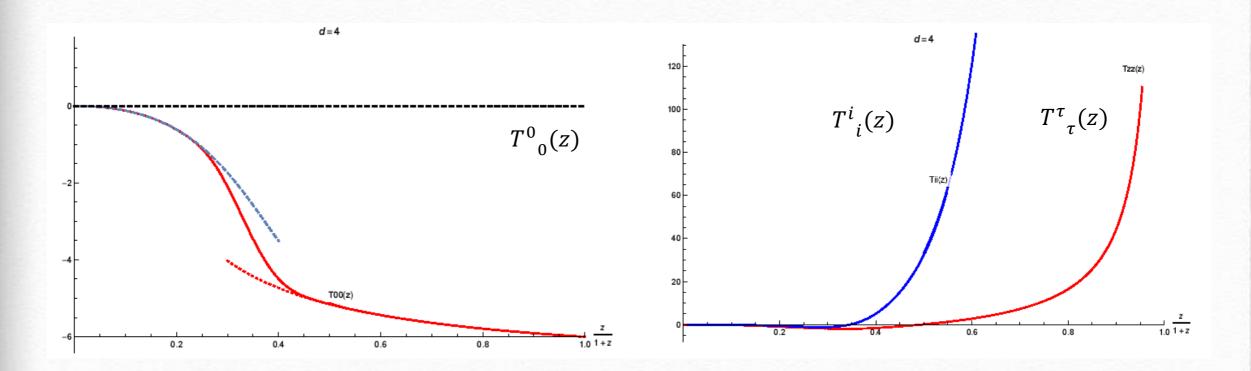


3. No curvature singularity!!

3'. Milder curvature singularity!!

Question

How to evaluate the energy of this geometry?

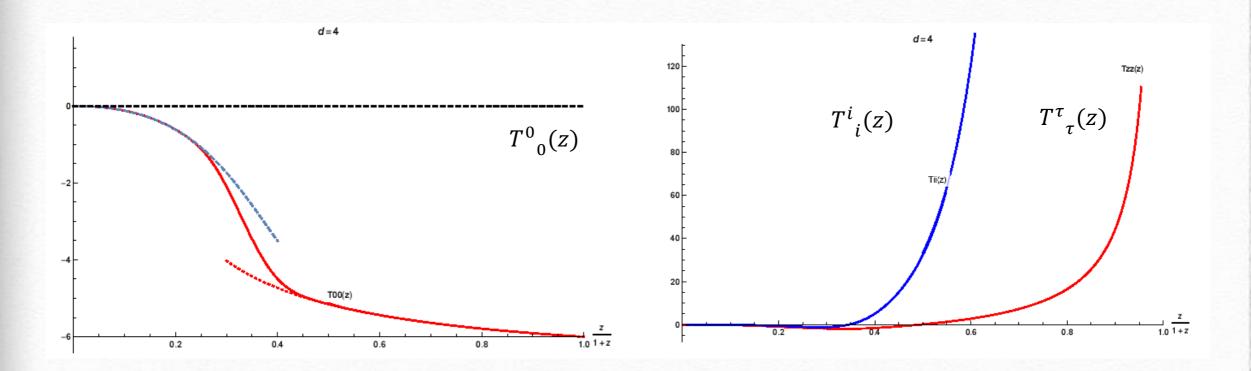


3. No curvature singularity!!

3'. Milder curvature singularity!!

Question

How to evaluate the energy of this geometry? Standard: Quasi-local energy. (Energy defined locally on asymptotic region of spacetime) $\int d^{d-1}x H$? + GH term + conter term? Surface integral \Rightarrow cannot be precise... [ADM '62] [Brown-York '92] [Hawking-Horowitz '95] [Horowitz-Mayers '98] [Balasubramanian-Kraus '98]...



3. No curvature singularity!!

3'. Milder curvature singularity!!

Question

How to evaluate the energy of this geometry? Standard: Quasi-local energy. (Energy defined locally on asymptotic region of spacetime) $\int d^{d-1}x H$? + GH term + conter term? Surface integral \Rightarrow cannot be precise... [ADM '62] [Brown-York '92] [Hawking-Horowitz '95] [Horowitz-Mayers '98] [Balasubramanian-Kraus '98]... Volume integral? $\int d^d x T_{00}$? $\int d^d x T^{00}$? $\int d^d x T_0^0$? $+ \sqrt{g}$? Precise form?

Plan

- ✓ 1. Introduction
- 2. Flow equation and bulk construction
- 3. Holographic geometry at finite T
 - 4. Conserved charge in GR
 - 5. Summary

Conserved charges in general relativity

[Aoki-Onogi-SY '20]

Question

What is a precise definition of energy in GR?

 $\int d^d x \, T_{00}? \qquad \int d^d x \, T^{00}? \qquad \int d^d x \, T_0^0? \qquad + \sqrt{g}?$

[Aoki-Onogi-SY '20]

A precise definition of energy available in a **general** D-dim curved spacetime $E = \int d^{D-1}x \sqrt{|g|} (-T_0^0)$

[Aoki-Onogi-SY '20]

A precise definition of energy available in a **general** D-dim curved spacetime

 $E = \int d^{D-1}x \sqrt{|g|} (-T_0^0)$

$$\xi^{\mu} = -\delta_0^{\mu}$$

A [conserved] charge associated with a [Killing] vector

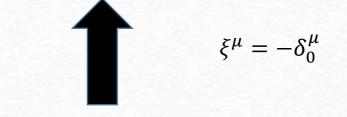
 $Q = \int d^{D-1}x \sqrt{|g|} T^0_\mu \xi^\mu$

 $\nabla_{\mu}\xi_{\nu}(x) + \nabla_{\nu}\xi_{\mu}(x) = 0$

[Aoki-Onogi-SY '20]

A precise definition of energy available in a **general** D-dim curved spacetime

 $E = \int d^{D-1}x \sqrt{|g|} (-T_0^0)$



A [conserved] charge associated with a [Killing] vector

 $Q = \int d^{D-1}x \sqrt{|g|} T^0_\mu \xi^\mu$

 $\nabla_{\mu}\xi_{\nu}(x) + \nabla_{\nu}\xi_{\mu}(x) = 0$

Q1. Was this known?

Formally, yes. \Rightarrow V. Fock, *The Theory of Space, Time and Gravitation* (Pergamon Press, New York 1959) The quantity $I = \int T^{\mu 0} \varphi_{\mu} \sqrt{-g} dx_1 dx_2 dx_3$ will be constant, \cdots , if the vector φ_{μ} satisfies the equation $\nabla_{\nu} \varphi_{\mu} + \nabla_{\mu} \varphi_{\nu} = 0$.

[Aoki-Onogi-SY '20]

A precise definition of energy available in a **general** D-dim curved spacetime

 $E = \int d^{D-1}x \sqrt{|g|} (-T_0^0)$

A [conserved] charge associated with a [Killing] vector

 $Q = \int d^{D-1}x \sqrt{|g|} T^0_{\mu} \xi^{\mu}$

 $\nabla_{\mu}\xi_{\nu}(x) + \nabla_{\nu}\xi_{\mu}(x) = 0$

Q1. Was this known?

Formally, yes. \Rightarrow V. Fock, *The Theory of Space, Time and Gravitation* (Pergamon Press, New York 1959) The quantity $I = \int T^{\mu 0} \varphi_{\mu} \sqrt{-g} dx_1 dx_2 dx_3$ will be constant, \cdots , if the vector φ_{μ} satisfies the equation $\nabla_{\nu} \varphi_{\mu} + \nabla_{\mu} \varphi_{\nu} = 0$.

Q2. Then what's new?

Our claim is this definition can be applied to **generic spacetime including BH**! (This definition has been forgotten and not been well studied for some reason.)

[Aoki-Onogi-SY '20]

Let us compute mass of the Schwarzschild ((A)dS)BH.

Einstein equation

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = 0.$$

Sch BH solution

$$ds^{2} = -f(r)(dx^{0})^{2} + \frac{1}{f(r)}dr^{2} + r^{2}\tilde{g}_{ij}dx^{i}dx^{j}$$

where

$$f(r) = \frac{-2\Lambda r^2}{(d-2)(d-1)} + k - \frac{2G_N M}{r^{d-3}}.$$
 $(d-2)R_{ij} = (d-3)k\tilde{g}_{ij}$

[Aoki-Onogi-SY '20]

Let us compute mass of the Schwarzschild ((A)dS)BH.

Einstein equation
$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = 0$$

Sch BH solution

$$ds^{2} = -f(r)(dx^{0})^{2} + \frac{1}{f(r)}dr^{2} + r^{2}\tilde{g}_{ij}dx^{i}dx^{j}$$

where

$$f(r) = \frac{-2\Lambda r^2}{(d-2)(d-1)} + k - \frac{2G_N M}{r^{d-3}}.$$
 $(d-2)R_{ij} = (d-3)k\tilde{g}_{ij}$

 \exists a Killing vector $\xi^{\mu} = -\delta_0^{\mu}$ \Rightarrow The energy is conserved. \Rightarrow Energy = Mass

$$E = \int d^{d-1}\vec{x} \sqrt{|g|} (-T^0{}_0),$$

where the matter energy momentum tensor is

$$T_{\mu\nu} = \frac{1}{8\pi G_N} (R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu})$$

[Aoki-Onogi-SY '20]

Let us compute mass of the Schwarzschild ((A)dS)BH.

Einstein equation
$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = 0$$

Sch BH solution

$$ds^{2} = -f(r)(dx^{0})^{2} + \frac{1}{f(r)}dr^{2} + r^{2}\tilde{g}_{ij}dx^{i}dx^{j}$$

where

$$f(r) = \frac{-2\Lambda r^2}{(d-2)(d-1)} + k - \frac{2G_N M}{r^{d-3}}.$$
 $(d-2)R_{ij} = (d-3)k\tilde{g}_{ij}$

 \exists a Killing vector $\xi^{\mu} = -\delta_0^{\mu} \implies$ The energy is conserved. \implies Energy = Mass

$$E = \int d^{d-1}\vec{x} \sqrt{|g|} (-T^0{}_0),$$

where the matter energy momentum tensor is

$$T_{\mu\nu} = \frac{1}{8\pi G_N} (R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu})$$

Does this vanish since there is no matter in EOM and BH is a vacuum solution? \Rightarrow Our answer is NO! T_{uv} vanishes except singularity!! Cf. electron in electromagnetism.

[Aoki-Onogi-SY '20]

The quickest way to see this is to compute energy momentum tensors including contribution of singularity

$$\begin{aligned} R^0{}_0 &= -\frac{1}{2r^{d-2}}\partial_r \left(r^{d-2}\partial_r f(r)\right) = R^r{}_r, \\ R^i{}_j &= \delta^i_j \left[\frac{(d-3)k}{r^2} - \frac{1}{r^{d-2}}\partial_r \left(r^{d-3}f(r)\right)\right] \end{aligned}$$

$$T_0^0 = \frac{d-2}{16 \pi G_N r^{d-2}} \partial_r (r^{d-3} \delta f(r))$$

where

$$\delta f(r) = \frac{-2 G_N M}{r^{d-3}}$$

[Aoki-Onogi-SY '20]

The quickest way to see this is to compute energy momentum tensors including contribution of singularity

$$\begin{aligned} R^0{}_0 &= -\frac{1}{2r^{d-2}}\partial_r \left(r^{d-2}\partial_r f(r)\right) = R^r{}_r, \\ R^i{}_j &= \delta^i_j \left[\frac{(d-3)k}{r^2} - \frac{1}{r^{d-2}}\partial_r \left(r^{d-3}f(r)\right)\right] \end{aligned}$$

$$T_0^0 = \frac{d-2}{16 \pi G_N r^{d-2}} \partial_r (r^{d-3} \delta f(r))$$

where

$$\delta f(r) = \frac{-2 G_N M}{r^{d-3}}$$

$$\Rightarrow \qquad E = -\int d^{d-1}\vec{x}\sqrt{|\tilde{g}|}\frac{d-2}{16\pi G_N}\partial_r\left(r^{d-3}\delta f\right) = \rho V_{d-2}$$
where
$$V_{d-2} = \int d^{d-2}x\sqrt{|\tilde{g}|} \qquad \rho = (d-2)M/(8\pi)$$

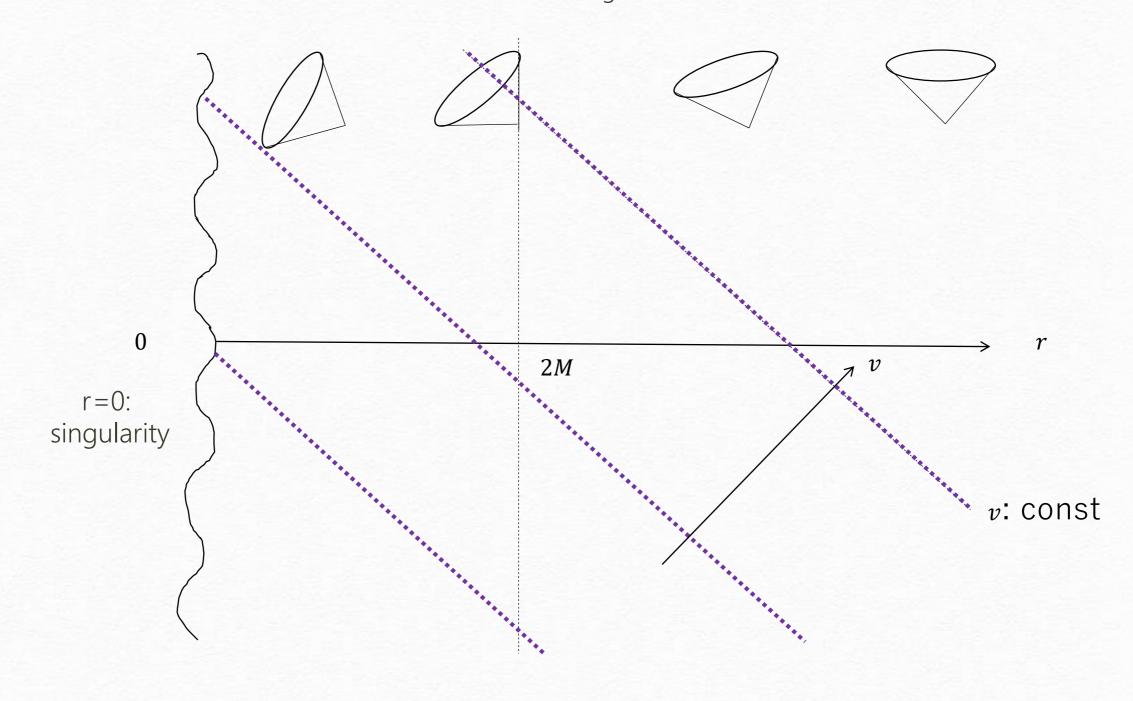
This result matches the known result computed by other method.

Volume-integration path

Eddington-Finkelstein coordinate (No horizon) $ds^{2} = -f(r)dv^{2} + 2 dvdr + r^{2} \tilde{g}_{ij} dx^{i}dx^{j}$

 $t^* = v - r$

Finkelstein diagram



[Aoki-Onogi-SY '20]

The charged (Reissner-Nordstrom) ((A)dS)BH.

EOM $G_{MN} + g_{MN}\Lambda = \kappa^{2}(-\frac{1}{4}g_{MN}F_{SR}F^{SR} + g^{RS}F_{MR}F_{NS}) \qquad \frac{1}{\sqrt{|g|}}\partial_{M}(\sqrt{|g|}F^{MN}) = 0$ RN BH solution $ds^{2} = -f(r)(dx^{0})^{2} + \frac{1}{f(r)}dr^{2} + r^{2}\tilde{g}_{ij}dx^{i}dx^{j} \qquad A_{M} = (-\frac{q}{r^{D-3}} + \frac{q}{r^{D-3}_{+}})\delta_{M}^{0}$

where

$$f = \frac{r^2}{L^2} + k - \frac{m}{r^{D-3}} + \frac{Q^2}{r^{2(D-3)}}, \quad \frac{1}{L^2} = \frac{-\Lambda}{(D-2)(D-1)/2}, \quad Q^2 = \frac{D-3}{D-2}\kappa^2 q^2$$

[Aoki-Onogi-SY '20]

The charged (Reissner-Nordstrom) ((A)dS)BH.

EOM
$$G_{MN} + g_{MN}\Lambda = \kappa^2 (-\frac{1}{4}g_{MN}F_{SR}F^{SR} + g^{RS}F_{MR}F_{NS})$$
 $\frac{1}{\sqrt{|g|}}\partial_M(\sqrt{|g|}F^{MN}) = 0$

RN BH solution

$$ds^{2} = -f(r)(dx^{0})^{2} + \frac{1}{f(r)}dr^{2} + r^{2}\tilde{g}_{ij}dx^{i}dx^{j} \qquad A_{M} = (-\frac{q}{r^{D-3}} + \frac{q}{r_{+}^{D-3}})\delta_{M}^{0}$$

where

$$f = \frac{r^2}{L^2} + k - \frac{m}{r^{D-3}} + \frac{Q^2}{r^{2(D-3)}}, \quad \frac{1}{L^2} = \frac{-\Lambda}{(D-2)(D-1)/2}, \quad Q^2 = \frac{D-3}{D-2}\kappa^2 q^2$$

 \exists a Killing vector $\xi^{\mu} = -\delta_0^{\mu}$ \Rightarrow The energy is conserved. \Rightarrow Energy = Mass

$$E = \int d^{d-1}\vec{x} \sqrt{|g|} (-T^0{}_0),$$

where the matter energy momentum tensor is

$$T_{\mu\nu} = \frac{1}{8\pi G_N} (R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu})$$

→ This diverges as self-energy of an electron does in electromagnetism.

→ We subtract the divergent contribution of the charged part.

$$\Rightarrow \quad E = -\int d^{d-1}\vec{x} \sqrt{|\tilde{g}|} \frac{d-2}{16\pi G_N} \partial_r \left(r^{d-3} \delta f \right) = \rho V_{d-2}$$

This result matches the known result computed by other method.

[Aoki-Onogi-SY '20]

The BTZ BH.

Einstein equation

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = 0. \label{eq:R_multiple}$$

BTZ BH solution

$$ds^{2} = -f(r)dt^{2} + \frac{1}{f(r)}dr^{2} + r^{2}(d\phi - \omega(r)dt)^{2} \qquad \omega(r) = \frac{G_{N}J}{2r^{2}}$$

where

$$f(r) = \frac{r^2}{L^2} - 2G_N M\theta(r) + \frac{G_N^2 J^2}{4r^2}$$

[Aoki-Onogi-SY '20]

The BTZ BH.

Einstein equation

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = 0. \label{eq:R_mu}$$

BTZ BH solution

$$ds^{2} = -f(r)dt^{2} + \frac{1}{f(r)}dr^{2} + r^{2}(d\phi - \omega(r)dt)^{2}$$

$$\omega(r) = \frac{G_N J}{2r^2}$$

where

$$f(r) = \frac{r^2}{L^2} - 2G_N M\theta(r) + \frac{G_N^2 J^2}{4r^2}$$

 \exists a Killing vector $\xi^{\mu} = -\delta_0^{\mu} \Rightarrow$ The energy (=Mass) is conserved.

$$E = \int d^{d-1}\vec{x} \sqrt{|g|} (-T^0{}_0),$$

 \exists a Killing vector $\xi^{\mu} = \delta^{\mu}_{\phi} \Rightarrow$ The angular momentum is conserved.

$$P_{\phi} = \int d^2x \sqrt{|g|} T^0_{\phi}.$$

Energy momentum tensors:

$$T_0^0 = \frac{1}{16 \pi G_N r} \partial_r \left(-2 G_N M \theta(r)\right)$$

$$T_{\phi}^{0} = \frac{-1}{16 \pi G_{N} r} \partial_{r} (r^{3} \omega'(r))$$

$$E = \frac{M}{4} \qquad P_{\phi} = \frac{J}{8}$$

This result matches the known result computed by other method.

New result?

[Aoki-Onogi-SY '20]

➡ Correction to known mass formula for a compact star Ansatz: Stationary spherically symmetric $ds^2 = -f(r)(dx^0)^2 + h(r)dr^2 + r^2 \tilde{g}_{ij} dx^i dx^j$ Matter stress tensor -> perfect fluid $T^0_0 = -\rho(r), \quad T^r_r = P(r), \quad T^i_i = \delta^i_i P(r)$ Toleman-Oppenheimer-Volkoff equation Inside the star: $-\frac{dP(r)}{dr} = \frac{G_d M(r)}{r^{d-2}} \left(P(r) + \rho(r) \right) h(r) \left\{ d - 3 + \frac{r^{d-1}}{(d-2)M(r)} \left(8\pi P(r) - \frac{2\Lambda}{(d-1)G_d} \right) \right\}$ where $\frac{1}{h(r)} = k - \frac{2G_d M(r)}{r^{d-3}} - \frac{2\Lambda r^2}{(d-2)(d-1)}$ $M(r) = \frac{8\pi}{d-2} \int_0^r ds s^{d-2} \rho(s), \quad M(0) = 0$

At the surface: $P(r)|_{r=R} = 0$

Outside the star: r > R, $\rho(r) = P(r) = 0$ $f(r) = \frac{1}{h(r)} = k - \frac{2G_d M(R)}{r^{d-3}} - \frac{2\Lambda r^2}{(d-2)(d-1)}$

Mass for a compact star

[Aoki-Onogi-SY '20]

$$E = -\int d^{d-2}x \int_0^\infty dr \sqrt{|g|} T^0_0$$

= $V_{d-1} \int_0^R \sqrt{f(r)h(r)} r^{d-2} \rho(r)$
= $\frac{(d-2)V_{d-2}}{8\pi} \int_0^R dr \sqrt{f(r)h(r)} \frac{dM(r)}{dr}$
= $\frac{(d-2)V_{d-2}}{8\pi} \left[M(R) - \int_0^R dr \frac{M(r)}{2} \frac{d}{dr} \log |f(r)h(r)| \right]$

ADM mass Corrections due to the internal structure of star

The correction term should be taken into account to evaluate the correct mass for a compact star.

Mass for a compact star

[Aoki-Onogi-SY '20]

$$E = -\int d^{d-2}x \int_0^\infty dr \sqrt{|g|} T^0_0$$

= $V_{d-1} \int_0^R \sqrt{f(r)h(r)} r^{d-2} \rho(r)$
= $\frac{(d-2)V_{d-2}}{8\pi} \int_0^R dr \sqrt{f(r)h(r)} \frac{dM(r)}{dr}$
= $\frac{(d-2)V_{d-2}}{8\pi} \left[M(R) - \int_0^R dr \frac{M(r)}{2} \frac{d}{dr} \log |f(r)h(r)| \right]$

ADM mass Corrections due to the internal structure of star

The correction term should be taken into account to evaluate the correct mass for a compact star.

Intuitive argument from electromagnetism

Q: Which is a correct definition for an electric charge on a curved spacetime?

$$(1) \qquad Q_{surface} = \int_{\Sigma_2} d^2 \sigma_i \, F^{0i}$$

(2)
$$Q_{volume} = \int_{V_3} d^3x \sqrt{|g|} j^0 = \int_{V_3} d^3x \sqrt{|g|} \nabla_{\mu} F^{0\mu}$$

The answer should be compatible with the charge quantization!

Plan

- ✓ 1. Introduction
- 2. Flow equation and bulk construction
- ✓ 3. Holographic geometry at finite T
- ✓ 4. Conserved charge in GR
 - 5. Summary

Summary

- We investigated holographic geometry for free scalars at finite temperature by the flow equation approach.
- The resulting holographic geometry has the following properties:
 - (i) It is an asymptotic AdSBH geometry with unknown matter contribution.
 - (ii) It has no coordinate singularity and milder curvature singularity.

 We presented a precise definition of a conserved charge associated with a Killing vector available on a general curved spacetime.

 Mass of well-known BHs was reproduced from the definition with nonvanishing energy momentum tensor at singularity.

The definition leads to correction to known mass formula of a compact star.
 In particular, the mass cannot be written only by a surface integral.

Future works

Holographic geometry for interacting theory or YM theory?

How to encode dynamics beyond geometry? For excited states?

working in progress [Aoki-Balog-SY]

How to reconstruct a local bulk operator? Causality from flow equation?
 cf. [HKLL]

Another application of the presented definition?

working in progress [Aoki-Onogi-SY]

Future works

Holographic geometry for interacting theory or YM theory?

How to encode dynamics beyond geometry? For excited states?

working in progress [Aoki-Balog-SY]

- How to reconstruct a local bulk operator? Causality from flow equation?
 cf. [HKLL]
- Another application of the presented definition?

working in progress [Aoki-Onogi-SY]

Thank you!