Standard Model Predictions and New Physics in $b \rightarrow c$ transitions

Martin Jung

UNIVERSITÀ DEGLI STUDI DI TORINO

Istituto Nazionale di Fisica Nucleare SEZIONE DI TORINO

E-Lab Seminar at Nagoya University
 25th of January 2021

$b \rightarrow c$ transitions in and beyond the SM $b \rightarrow c$ transitions. . .

- ... are an example of flavour-changing transitions
- ... proceed in the SM via the weak interaction

4 access to a fundamental SM parameter, $V_{c b}$

- ... dominate lifetimes of singly-heavy groundstate B hadrons
- . . . exhibit important hierarchies:
- Employ $\Lambda_{\mathrm{EW}} \gg m_{b, c}$:

4 Effective Theory with local 4-fermion operators
4 Two classes, semileptonic and nonleptonic
EW (h,t,Z,W)

- Employ $m_{b} \gtrsim m_{c} \gg \Lambda_{\mathrm{QCD}}$:

Heavy-quark expansion, tool for matrix elements

- Employ $\Lambda_{\mathrm{NP}} \gg \Lambda_{\mathrm{EW}}$:

4 Effective Theories (SMEFT, HEFT)
4 Model-independent NP parametrizations
Tensions in $b \rightarrow c \tau \nu, b \rightarrow c \ell \nu\left(V_{c b}\right.$ puzzle $)$ and $B_{d, s} \rightarrow D_{d, s}^{(*)}(\pi, K)$

Importance of (semi-)leptonic hadron decays

In the Standard Model:

- Tree-level, $\sim\left|V_{i j}\right|^{2} G_{F}^{2} \mathrm{FF}^{2}$
- Determination of $\left|V_{i j}\right|(6(+1) / 9)$

Beyond the Standard Model:

- Leptonic decays $\sim m_{l}^{2}$

\rightarrow large relative NP influence possible (e.g. $H^{ \pm}$)
- NP in semi-leptonic decays small/moderate

4 Need to understand the SM very precisely!
For instance isospin breaking in $\Upsilon(4 S) \rightarrow B \bar{B}$ [MJ'15]
Key advantages:

- Large rates
- Minimal hadronic input \Rightarrow systematically improvable
- Differential distributions \Rightarrow large set of observables

Lepton-non-Universality in $b \rightarrow c \tau \nu$

Puzzling $V_{c b}$ results

The $V_{c b}$ puzzle has been around for $20+$ years. . .

- $\sim 3 \sigma$ between exclusive (mostly $B \rightarrow D^{*} \ell \nu$) and inclusive $V_{c b}$
- Inclusive determination: includes $\mathcal{O}\left(1 / m_{b}^{3}, \alpha_{s} / m_{b}^{2}, \alpha_{s}^{2}\right)$

4 Excellent theoretical control, $\left|V_{c b}\right|=42.00 \pm 0.64$

- Exclusive determinations: $B \rightarrow D^{(*)} \ell \nu$, using CLN (fixed!)
\rightarrow CLN: HQE @ $\mathcal{O}\left(1 / m_{c, b}, \alpha_{s}\right)+$ slope-curvature relation in ξ

Recent developments

- Unfolded differential measurements made available by Belle

4 Different parametrizations possible
4 Important step for phenomenology!

- Lattice calculations for $B \rightarrow D$ FFs at non-zero recoil
$\rightarrow \mathrm{BGL} B \rightarrow D \ell \nu$ analysis: $\left|V_{c b}\right| \sim\left|V_{c b}^{\text {incl. }}\right|$, CLN fit bad [Bigi+'16]
4 but HQE analysis w/ partial $1 / m_{c}^{2}$ ok [Bernlochner+'17,MJ/Straub'18]
- Belle $2017 B \rightarrow D^{*} \ell \nu$ data: large difference between CLN and BGL [Bigi+,Grinstein+,Jaiswal+'17] , $\left|V_{c b}^{\text {BGL }}\right| \sim\left|V_{c b}^{\text {incl. }}\right|$
- Belle 2018: no parametrization-dependence seen, $\left|V_{c b}\right|$ lower
\rightarrow Intense discussion, no clear picture at first
First thing to do when noticing inconsistencies: Check SM predictions!
4 For semileptonic decays, that means mostly form factors

Form Factor Basics

Form Factors (FFs) parametrize fundamental mismatch:
Theory (e.g. SM) for partons (quarks)
vs.
Experiment with hadrons
$\left\langle D_{q}^{(*)}\left(p^{\prime}\right)\right| \bar{c} \gamma^{\mu} b\left|\bar{B}_{q}(p)\right\rangle=\left(p+p^{\prime}\right)^{\mu} f_{+}^{q}\left(q^{2}\right)+\left(p-p^{\prime}\right)^{\mu} f_{-}^{q}\left(q^{2}\right), q^{2}=\left(p-p^{\prime}\right)^{2}$
Most general matrix element parametrization, given symmetries:
Lorentz symmetry plus P - and T-symmetry of QCD
$f_{ \pm}\left(q^{2}\right)$: scalar functions of one kinematic variable
How to obtain these functions?
4 Calculable w/ non-perturbative methods (Lattice, LCSR,...) Precision?
4 Measurable e.g. in semileptonic transitions Normalization? Suppressed FFs? NP?

q^{2} dependence

- q^{2} range can be large, e.g. $q^{2} \in[0,12] \mathrm{GeV}^{2}$ in $B \rightarrow D$
- Calculations give usually one or few points
\rightarrow Knowledge of functional dependence on q^{2} cruical
- This is where discussions start...

Experiments should give information independent of this choice!

In the following: discuss BGL and HQE $(\rightarrow$ CLN $)$ parametrizations q^{2} dependence usually rewritten via conformal transformation:

$$
z\left(t=q^{2}, t_{0}\right)=\frac{\sqrt{t_{+}-t}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-t}+\sqrt{t_{+}-t_{0}}}
$$

$t_{+}=\left(M_{B_{q}}+M_{D_{q}^{(*)}}\right)^{2}$: pair-production threshold $t_{0}<t_{+}$: free parameter for which $z\left(t_{0}, t_{0}\right)=0$

Usually $|z| \ll 1$, e.g. $|z| \leq 0.06$ for semileptonic $B \rightarrow D$ decays
\Rightarrow Good expansion parameter

The BGL parametrization [Boyd/Grinstein/Lebed, 90's]
FFs are parametrized by a few coefficients the following way:

1. Consider analytical structure, make poles and cuts explicit
2. Without poles or cuts, the rest can be Taylor-expanded in z
3. Apply QCD properties (unitarity, crossing symmetry)
\rightarrow dispersion relation
4. Calculate partonic part perturbatively (+condensates)

Result:

$$
F(t)=\frac{1}{P(t) \phi(t)} \sum_{n=0}^{\infty} a_{n}\left[z\left(t, t_{0}\right)\right]^{n}
$$

- a_{n} : real coefficients, the only unknowns
- $P(t)$: Blaschke factor(s), information on poles below t_{+}
- $\phi(t)$: Outer function, chosen such that $\sum_{n=0}^{\infty} a_{n}^{2} \leq 1$
\rightarrow Series in z with bounded coefficients (each $\left|a_{n}\right| \leq 1$)!
4 Uncertainty related to truncation is calculable!
(see also [Fajfer + ,Nierste + ,Bernlochner + ,Bigi + ,Grinstein + ,Nandi $+\ldots]$)
Recent untagged analysis by Belle with 4 1D distributions [1809.03290] 4 "Tension with the ($V_{c b}$) value from the inclusive approach remains"

Analysis of 2017+2018 Belle data with BGL form factors:

- Datasets roughly compatible
- d'Agostini bias + syst. important
- All FFs to z^{2} to include uncertainties

$$
\left|V_{c b}^{D^{*}}\right|=39.6_{-1.0}^{+1.1} \times 10^{-3}
$$

$$
R\left(D^{*}\right)=0.254_{-0.006}^{+0.007}
$$

- 2018: no parametrization dependence

HQE parametrization

HQE parametrization uses additional information compared to BGL
4 Heavy-Quark Expansion (HQE)

- $m_{b, c} \rightarrow \infty$: all $B \rightarrow D^{(*)}$ FFs given by 1 Isgur-Wise function
- Systematic expansion in $1 / m_{b, c}$ and α_{s}
- Higher orders in $1 / m_{b, c}$: FFs remain related
\rightarrow Parameter reduction, necessary for NP analyses!
CLN parametrization [Caprini+'97]:
HQE to order $1 / m_{b, c}, \alpha_{s}$ plus (approx.) constraints from unitarity [Bernlochner/Ligeti/Papucci/Robinson'17] : identical approach, updated and consistent treatment of correlations

Problem: Contradicts Lattice QCD (both in $B \rightarrow D$ and $B \rightarrow D^{*}$)
Dealt with by varying calculable ($@ 1 / m_{b, c}$) parameters, e.g. $h_{A_{1}}(1)$
4 Not a systematic expansion in $1 / m_{b, c}$ anymore!
\rightarrow Related uncertainty remains $\mathcal{O}\left[\Lambda^{2} /\left(2 m_{c}\right)^{2}\right] \sim 5 \%$, insufficient
Solution: Include systematically $1 / m_{c}^{2}$ corrections
[Bordone/MJ/vDyk'19, Bordone/Gubernari/MJ/vDyk'20] ,using [Falk/Neubert'92]

Theory determination of $b \rightarrow c$ Form Factors
SM: BGL fit to data + FF normalization $\rightarrow\left|V_{c b}\right|$
NP: can affect the q^{2}-dependence, introduces additional FFs
4 To determine general NP, FF shapes needed from theory
In [MJ/Straub'18,Bordone/MJ/vDyk'19], we use all available theory input:

- Unitarity bounds (using results from [BGL,Bigi/Gambino(/Schacht)'16'17])
- LQCD for $f_{+, 0}\left(q^{2}\right)(B \rightarrow D), h_{A_{1}}\left(q_{\max }^{2}\right)\left(B \rightarrow D^{*}\right)$ [HPQCD'15,'17,Fermilab/MILC'14,'15]
- LCSR for all FFs (but f_{T}) [Gubernari/Kokulu/vDyk'18]
- Consistent HQET expansion [Bernlocher+] to $\mathcal{O}\left(\alpha_{s}, 1 / m_{b}, 1 / m_{c}^{2}\right)$
- improved description

FFs under control;
$R\left(D^{*}\right)=0.247(6)$
[Bordone/MJ/vDyk'19]

Robustness of the HQE expansion up to $1 / m_{c}^{2}$
[Bordone/MJ/vDyk'19]
Testing FFs by comparing to data and fits in BGL parametrization:

- Fits $3 / 2 / 1$ and $2 / 1 / 0$ are theory-only fits(!)
- $k / I / m$ denotes orders in z at $\mathcal{O}\left(1,1 / m_{c}, 1 / m_{c}^{2}\right)$
- w-distribution yields information on FF shape $\rightarrow V_{c b}$
- Angular distributions more strongly constrained by theory, only

4 Predicted shapes perfectly confirmed by $B \rightarrow D^{(*)} \ell \nu$ data
$\leftrightarrows V_{c b}$ from Belle'17 compatible between HQE and BGL!

Robustness of the HQE expansion up to $1 / m_{c}^{2}$
[Bordone/MJ/vDyk'19]
Testing FFs by comparing to data and fits in BGL parametrization:

- $B \rightarrow D^{*}$ BGL coefficient ratios from:

1. Data (Belle'17+'18) + weak unitarity (yellow)
2. HQE theory fit $2 / 1 / 0$ (red)
3. HQE theory fit $3 / 2 / 1$ (blue)
\rightarrow Again compatibility of theory with data
4 $2 / 1 / 0$ underestimates the uncertainties massively
\rightarrow For $b_{i}, c_{i}\left(\rightarrow f, \mathcal{F}_{1}\right)$ data and theory complementary

Including $\bar{B}_{s} \rightarrow D_{s}^{(*)}$ Form Factors [Bordone/Gubermar//MJ/(Dyk'20]

Dispersion relation sums over hadronic intermediate states
\rightarrow Includes $B_{s} D_{s}^{(*)}$, included via $\mathrm{SU}(3)+$ conservative breaking
4 Explicit treatment can improve also $\bar{B} \rightarrow D^{(*)} \ell \nu$
Experimental progress in $\bar{B}_{s} \rightarrow D_{s}^{(*)} \ell \nu$:
2 new LHCb measurements [2001.03225, 2003.08453]

Improved theory determinations required, especially for NP
We extend our $1 / m_{c}^{2}$ analysis by including:

- Available lattice data:
$\left(2 \bar{B}_{s} \rightarrow D_{s}\right.$ FFs (q^{2} dependent), $1 \bar{B}_{s} \rightarrow D^{*}$ FF (only $\left.q_{\max }^{2}\right)$)
- Adaptation of existing QCDSR results [Ligeti/Neubert/Nir'93'94] , including SU(3) breaking
- New LCSR results extending [Gubernari+'18] to B_{s}, including SU(3) breaking
4 Fully correlated fit to $\bar{B} \rightarrow D^{(*)}, \bar{B}_{s} \rightarrow D_{s}^{(*)}$ FFs

Including $\bar{B}_{s} \rightarrow D_{s}^{(*)}$ Form Factors, Results

We observe the following:

- Theory constraints fitted consistently in an HQE framework
- $\mathcal{O}\left(1 / m_{c}^{2}\right)$ power corrections have $\mathcal{O}(1)$ coefficients
- No indication of sizable $\operatorname{SU}(3)$ breaking
- Slight influence of strengthened unitarity bounds
- Improved determination of $\bar{B}_{s} \rightarrow D_{s}^{(*)}$ FFs

Including $\bar{B}_{s} \rightarrow D_{s}^{(*)}$ Form Factors, Results

We observe the following:

- Theory constraints fitted consistently in an HQE framework
- $\mathcal{O}\left(1 / m_{c}^{2}\right)$ power corrections have $\mathcal{O}(1)$ coefficients
- No indication of sizable $\operatorname{SU}(3)$ breaking
- Slight influence of strengthened unitarity bounds
- Improved determination of $\bar{B}_{s} \rightarrow D_{s}^{(*)}$ FFs

Including $\bar{B}_{s} \rightarrow D_{s}^{(*)}$ Form Factors, Results

We observe the following:

- Theory constraints fitted consistently in an HQE framework
- $\mathcal{O}\left(1 / m_{c}^{2}\right)$ power corrections have $\mathcal{O}(1)$ coefficients
- No indication of sizable SU(3) breaking
- Slight influence of strengthened unitarity bounds
- Improved determination of $\bar{B}_{s} \rightarrow D_{s}^{(*)}$ FFs

Theory-only predictions:

$$
\begin{aligned}
R(D) & =0.2989(32) & R\left(D^{*}\right)=0.2472(50) \\
R\left(D_{s}\right) & =0.2970(34) & R\left(D_{s}^{*}\right)=0.2450(82)
\end{aligned}
$$

Theory + Experiment (Belle'17) predictions:

$$
\begin{aligned}
R(D) & =0.2981(29) & R\left(D^{*}\right)=0.2504(26) \\
R\left(D_{s}\right) & =0.2971(34) & R\left(D_{s}^{*}\right)=0.2472(77)
\end{aligned}
$$

BSM fits in $b \rightarrow c \ell \nu$: Experimental analyses used

Decay	Observable	Experiment	Comment	Year
$\boldsymbol{B} \rightarrow \boldsymbol{D}(\boldsymbol{e}, \boldsymbol{\mu}) \boldsymbol{\nu}$	BR	BaBar	global fit	2008
$B \rightarrow D \ell \nu$	$\frac{d \Gamma}{d w}$	BaBar	hadronic tag	2009
$\boldsymbol{B} \rightarrow \boldsymbol{D}(\boldsymbol{e}, \boldsymbol{\mu}) \boldsymbol{\nu}$	$\frac{d \boldsymbol{N}}{d \boldsymbol{w}}$	Belle	hadronic tag	2015
$\boldsymbol{B} \rightarrow \boldsymbol{D}^{*}(\boldsymbol{e}, \boldsymbol{\mu}) \boldsymbol{\nu}$	BR	BaBar	global fit	2008
$B \rightarrow D^{*} \ell \nu$	BR	BaBar	hadronic tag	2007
$B \rightarrow D^{*} \ell \nu$	BR	BaBar	untagged B^{0}	2007
$B \rightarrow D^{*} \ell \nu$	BR	BaBar	untagged $B^{ \pm}$	2007
$\boldsymbol{B} \rightarrow \boldsymbol{D}^{*}(\boldsymbol{e}, \boldsymbol{\mu}) \boldsymbol{\nu}$	$\frac{d \Gamma L, \tau}{d w}$	Belle	untagged	2010
$B \rightarrow D^{*} \ell \nu$	$\frac{d \Gamma}{d\left(\boldsymbol{w}, \cos \theta_{V}, \cos \theta_{l, \phi)}\right)}$	Belle	hadronic tag	2017

Different categories of data:

- Only total rates vs. differential distributions
- e, μ-averaged vs. individual measurements
- Correlation matrices given or not
\leftrightarrows Sometimes presentation prevents use in non-universal scenarios
\leftrightarrows Recent Belle analyses (mostly) exemplary

BSM fits in $b \rightarrow c \ell \nu: \mathcal{O}_{V_{L}}[M J /$ Straub'18]

As a crosscheck, produce SM values (using data from HEPdata): $V_{c b}^{B \rightarrow D}=(39.6 \pm 0.9) 10^{-3} \quad V_{c b}^{B \rightarrow D^{*}}=(39.0 \pm 0.7) 10^{-3}$
4 low compared to BGL analyses, compatible with recent results
$N P$ in $\mathcal{O}_{V_{L}}^{\ell \ell^{\prime}}:$ can be absorbed via $\tilde{V}_{c b}^{\ell}=V_{c b}\left[\left|1+C_{V_{L}}^{\ell}\right|^{2}+\sum_{\ell^{\prime} \neq \ell}\left|C_{V_{L}}^{\ell \ell^{\prime}}\right|^{2}\right]^{1 / 2}$
Only subset of data usable $B \rightarrow D, D^{*}$ in agreement No sign of LFNU
4 constrained to be $\lesssim \% \times V_{c b}$ In the following:

- e and μ analyzed separately
\rightarrow Usable in different contexts
- Full FF constraints used
* Plots created with flavio
+ independently double-checked
4 Open source, adaptable

Right-handed vector currents [mJ/Straub'18]

Usual suspect for tension inclusive vs. exclusive [e.g. Voloshin'97] SMEFT: $C_{V_{R}}^{\ell \ell^{\prime}}$ is lepton-flavour-universal [Cirigliano+'10,Catà/MJ'15]
4 All available data can be used in SMEFT context
4 Violation could signal non-linear realization of EWSB [Catà/MJ'15]

[Plot: updated from Crivellin/Pokorski'14]

Impact of differential distributions:
$V_{c b}$ and $C_{V_{R}}$ can be determined individually in $B \rightarrow D^{*}$
4 Tension smaller, but is not improved by $C_{V_{R}}$
$\Leftrightarrow C_{V_{R}}$ in SMEFT cannot explain $b \rightarrow c \tau \nu$ data

A puzzle in non-leptonic $b \rightarrow c$ transitions

[Bordone/Gubernari/Huber/MJ/vDyk'20]

FFs also of central importance in non-leptonic decays:

- Complicated in general, $B \rightarrow M_{1} M_{2}$ dynamics
- Simplest cases: $\bar{B}_{d} \rightarrow D_{d}^{(*)} \bar{K}$ and $\bar{B}_{s} \rightarrow D_{s}^{(*)} \pi$ (5 diff. quarks)

4 Colour-allowed tree, $1 / m_{b}^{0} @ \mathcal{O}\left(\alpha_{s}^{2}\right)$ [Huber+'16] , factorizes at $1 / m_{b}$
4 Amplitudes dominantly $\sim \bar{B}_{q} \rightarrow D_{q}^{(*)}$ FFs
4 Used to determine f_{s} / f_{d} at hadron colliders [Fleischer+'11]
Prediction/Measurement

Updated and extended calculation: tension of 4.4σ w.r.t. exp.!

Interpretation

- Large effect, $\sim-30 \%$ for BRs
- Ratios of branching ratios ok
- Our estimate of $\mathcal{O}\left(1 / m_{b}\right)$ contributions could be wrong

4 Requires factor of 500 , effectively $\mathcal{O}\left(1 / m_{b}\right) \rightarrow \mathcal{O}(1)$

- Experimental data consistent (few absolute BRs measured)

4 large BR , simple to measure

- QCDf uncertainty $\mathcal{O}\left(1 / m_{b}^{2}, \alpha_{s}^{3}\right)$
\rightarrow Much smaller than the observed effect
- NP? $\Delta_{P} \sim \Delta_{V} \sim-20 \%$ possible
\rightarrow Surprising, affects e.g. lifetimes
4 Not easy to avoid collider constraints [Iguro/Kitahara'20]

Whatever the solution, we will learn something important!

Conclusions

$b \rightarrow c$ transitions remain an exciting topic to study
4 Several tensions to understand
4 Focus here was mostly on FF determinations

- For BSM analyses, theory determination of FFs required!
- Previous assumptions (\rightarrow CLN) contradicted by lattice data

4 First analysis at $1 / m_{c}^{2}$ provides all FFs
\rightarrow Combines unitarity, lattice, LCSR, QCDSR
$4 V_{c b}$ puzzle much reduced, $R\left(D^{*}\right)$ slightly lower

- Conservative uncertainty estimates important

4 Higher-order contributions have to be accounted for

- $b \rightarrow c \neq$: strong constraints, qualitative progress for V_{R}
- New discrepancy in non-leptonic decays
\rightarrow Requires significant revision of our understanding
4 BSM physics possible explanation
Exciting times ahead in $b \rightarrow c$ transitions!

