Standard Model Predictions and New Physics in $b \rightarrow c$ transitions

Martin Jung

Istituto Nazionale di Fisica Nucleare SEZIONE DI TORINO

E-Lab Seminar at Nagoya University 25th of January 2021

$b \rightarrow c$ transitions in and beyond the SM

 $b \rightarrow c$ transitions. . .

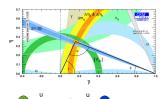
B (~5 GeV)

QCD (<1 GeV)

- ... are an example of flavour-changing transitions
- ... proceed in the SM via the weak interaction
- \blacktriangleright access to a fundamental SM parameter, V_{cb}
- ... dominate lifetimes of singly-heavy groundstate B hadrons
- ... exhibit important hierarchies:

• Employ
$$\Lambda_{\rm EW}\gg m_{b,c}$$
:
• Effective Theory with local 4-fermion operators
• Two classes, semileptonic and nonleptonic
• Employ $m_b\gtrsim m_c\gg \Lambda_{\rm QCD}$:
Heavy-quark expansion, tool for matrix elements

Effective Theories (SMEFT, HEFT)Model-independent NP parametrizations


Tensions in b o c au
u, $b o c\ell
u$ (V_{cb} puzzle) and $B_{d,s} o D_{d,s}^{(*)}(\pi,K)$

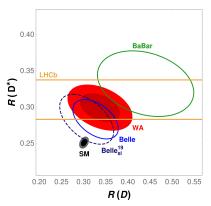
• Employ $\Lambda_{\rm NP} \gg \Lambda_{\rm EW}$:

Importance of (semi-)leptonic hadron decays

In the Standard Model:

- Tree-level, $\sim |V_{ij}|^2 G_F^2 \, \mathrm{FF}^2$
- Determination of $|V_{ij}|$ (6(+1)/9)

Beyond the Standard Model:


- Leptonic decays $\sim m_I^2$
 - \blacktriangleright large relative NP influence possible (e.g. H^{\pm})
- NP in semi-leptonic decays small/moderate
 - Need to understand the SM very precisely! For instance isospin breaking in $\Upsilon(4S) \to B\bar{B}$ [MJ'15]

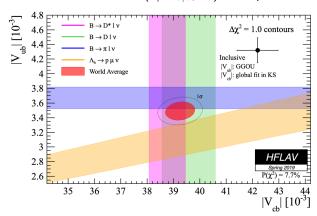
Key advantages:

- Large rates
- Minimal hadronic input ⇒ systematically improvable
- Differential distributions ⇒ large set of observables

Lepton-non-Universality in $b \to c \tau \nu$

$$R(X) \equiv \frac{\mathrm{Br}(B \to X \tau \nu)}{\mathrm{Br}(B \to X \ell \nu)} \,, \quad \hat{R}(X) \equiv \frac{R(X)}{R(X)|_{\mathrm{SM}}} \,$$

contours: 68% CL filled: 95(68)% CL


- R(D^(*)): BaBar, Belle, LHCb
 ▶ average ~ 4σ from SM
- au-polarization (au au had) [1608.06391]
- $B_c \to J/\psi \tau \nu$ [1711.05623] : huge
- Differential rates from Belle, BaBar
- Total width of B_c
- $b \to X_c \tau \nu$ by LEP
- D* polarization (Belle)
- Moriond'19: Belle update
 - Reduced significance (partly $B \to D^* \ell \nu$)

Note: only 1 result $\geq 3\sigma$ from SM

Puzzling V_{cb} results

The V_{cb} puzzle has been around for 20+ years...

- ullet $\sim 3\sigma$ between exclusive (mostly $B o D^*\ell
 u$) and inclusive V_{cb}
- Inclusive determination: includes $\mathcal{O}(1/m_b^3, \alpha_s/m_b^2, \alpha_s^2)$
 - \blacktriangleright Excellent theoretical control, $|V_{cb}|=42.00\pm0.64$
- Exclusive determinations: $B o D^{(*)} \ell \nu$, using CLN (fixed!)
 - ▶ CLN: HQE @ $\mathcal{O}(1/m_{c,b},\alpha_s)$ + slope-curvature relation in ξ

Recent developments

- Unfolded differential measurements made available by Belle
 - Different parametrizations possible
 - ▶ Important step for phenomenology!
- Lattice calculations for $B \to D$ FFs at non-zero recoil
- lacktriangle BGL $B o D\ell
 u$ analysis: $|V_{cb}|\sim |V_{cb}^{
 m incl.}|$, CLN fit bad [Bigi+'16]
 - ightharpoonup but HQE analysis w/ partial $1/m_c^2$ ok [Bernlochner+'17,MJ/Straub'18]
- Belle 2017 $B \to D^*\ell \nu$ data: large difference between CLN and BGL [Bigi+,Grinstein+,Jaiswal+'17] , $|V_{cb}^{\rm BGL}| \sim |V_{cb}^{\rm incl.}|$
- Belle 2018: no parametrization-dependence seen, $|V_{cb}|$ lower
- Intense discussion, no clear picture at first

First thing to do when noticing inconsistencies: Check SM predictions!

For semileptonic decays, that means mostly form factors

Form Factor Basics

Form Factors (FFs) parametrize fundamental mismatch:

Experiment with hadrons

$$\left\langle D_q^{(*)}(p')|\bar{c}\gamma^{\mu}b|\bar{B}_q(p)\right\rangle = (p+p')^{\mu}f_+^q(q^2) + (p-p')^{\mu}f_-^q(q^2), \ q^2 = (p-p')^2$$

Most general matrix element parametrization, given symmetries:

Lorentz symmetry plus P- and T-symmetry of QCD

 $f_{\pm}(q^2)$: scalar functions of one kinematic variable

How to obtain these functions?

- Calculable w/ non-perturbative methods (Lattice, LCSR,...)
 Precision?
- ▶ Measurable e.g. in semileptonic transitions Normalization? Suppressed FFs? NP?

q^2 dependence

- q^2 range can be large, e.g. $q^2 \in [0, 12] \text{ GeV}^2$ in $B \to D$
- Calculations give usually one or few points
- \blacktriangleright Knowledge of functional dependence on q^2 cruical
- This is where discussions start...

Experiments should give information independent of this choice!

In the following: discuss BGL and HQE (\rightarrow CLN) parametrizations q^2 dependence usually rewritten via conformal transformation:

$$z\left(t=q^{2},t_{0}
ight)=rac{\sqrt{t_{+}-t}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-t}+\sqrt{t_{+}-t_{0}}}$$

 $t_{+} = (M_{B_q} + M_{D_q^{(*)}})^2$: pair-production threshold $t_0 < t_{+}$: free parameter for which $z(t_0, t_0) = 0$

Usually $|z| \ll 1$, e.g. $|z| \le 0.06$ for semileptonic $B \to D$ decays \blacksquare Good expansion parameter

The BGL parametrization [Boyd/Grinstein/Lebed, 90's]

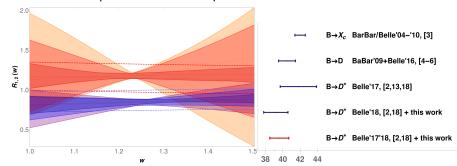
FFs are parametrized by a few coefficients the following way:

- 1. Consider analytical structure, make poles and cuts explicit
- 2. Without poles or cuts, the rest can be Taylor-expanded in z
- 3. Apply QCD properties (unitarity, crossing symmetry)dispersion relation
- 4. Calculate partonic part perturbatively (+condensates)

$$F(t) = \frac{1}{P(t)\phi(t)} \sum_{n=0}^{\infty} a_n [z(t,t_0)]^n.$$

- a_n: real coefficients, the only unknowns
- P(t): Blaschke factor(s), information on poles below t_+
- $\phi(t)$: Outer function, chosen such that $\sum_{n=0}^{\infty} a_n^2 \le 1$
- Series in z with bounded coefficients (each $|a_n| \le 1$)!
- Uncertainty related to truncation is calculable!

$V_{cb} + R(D^*) \text{ w/ data} + \text{lattice} + \text{unitarity} \text{ [Gambino/MJ/Schacht'19]}$


(see also [Fajfer+,Nierste+,Bernlochner+,Bigi+,Grinstein+,Nandi+...])
Recent untagged analysis by Belle with 4 1D distributions [1809.03290]

lacktriangle "Tension with the (V_{cb}) value from the inclusive approach remains"

Analysis of 2017+2018 Belle data with BGL form factors:

- Datasets roughly compatible
- d'Agostini bias + syst. important
- All FFs to z^2 to include uncertainties $R(D^*) = 0.254^{+0.007}_{-0.006}$
- 2018: no parametrization dependence

$$|V_{cb}^{D^*}| = 39.6_{-1.0}^{+1.1} \times 10^{-3}$$

 $R(D^*) = 0.254_{-0.006}^{+0.007}$

HQE parametrization

HQE parametrization uses additional information compared to BGL

- ➡ Heavy-Quark Expansion (HQE)
 - $m_{b,c} \to \infty$: all $B \to D^{(*)}$ FFs given by 1 Isgur-Wise function
 - Systematic expansion in $1/m_{b,c}$ and α_s
 - Higher orders in $1/m_{b,c}$: FFs remain related
 - Parameter reduction, necessary for NP analyses!

CLN parametrization [Caprini+'97]:

HQE to order $1/m_{b,c}, \alpha_s$ plus (approx.) constraints from unitarity [Bernlochner/Ligeti/Papucci/Robinson'17]: identical approach, updated and consistent treatment of correlations

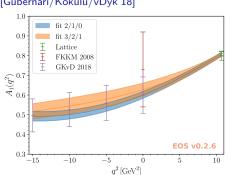
Problem: Contradicts Lattice QCD (both in $B \to D$ and $B \to D^*$) Dealt with by varying calculable $(@1/m_{b,c})$ parameters, e.g. $h_{A_1}(1)$

- **Not** a systematic expansion in $1/m_{b,c}$ anymore!
- ▶ Related uncertainty remains $\mathcal{O}[\Lambda^2/(2m_c)^2] \sim 5\%$, insufficient

Solution: Include systematically $1/m_c^2$ corrections [Bordone/MJ/vDyk'19,Bordone/Gubernari/MJ/vDyk'20] ,using [Falk/Neubert'92]

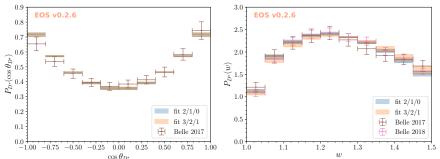
Theory determination of $b \rightarrow c$ Form Factors

SM: BGL fit to data + FF normalization $\rightarrow |V_{cb}|$


NP: can affect the q^2 -dependence, introduces additional FFs

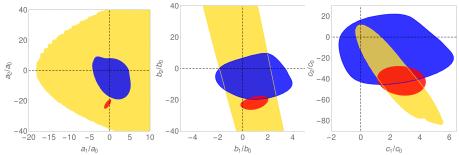
▶ To determine general NP, FF shapes needed from theory

In [MJ/Straub'18,Bordone/MJ/vDyk'19] , we use all available theory input:


- Unitarity bounds (using results from [BGL,Bigi/Gambino(/Schacht)'16'17])
- LQCD for $f_{+,0}(q^2)$ (B o D), $h_{A_1}(q^2_{\max})$ $(B o D^*)$ [HPQCD'15,'17,Fermilab/MILC'14,'15]
- LCSR for all FFs (but f_T) [Gubernari/Kokulu/vDyk'18]
- Consistent HQET expansion [Bernlocher+] to $\mathcal{O}(\alpha_s, 1/m_b, 1/m_c^2)$
 - improved description

FFs under control; $R(D^*) = 0.247(6)$ [Bordone/MJ/vDyk'19]

Robustness of the HQE expansion up to $1/m_c^2$ [Bordone/MJ/vDyk'19]


Testing FFs by comparing to data and fits in BGL parametrization:

- Fits 3/2/1 and 2/1/0 are theory-only fits(!)
- k/I/m denotes orders in z at $\mathcal{O}(1, 1/m_c, 1/m_c^2)$
- ullet w-distribution yields information on FF shape $o V_{cb}$
- Angular distributions more strongly constrained by theory, only
- lacktriangle Predicted shapes perfectly confirmed by $B o D^{(*)} \ell
 u$ data
- \triangleright V_{cb} from Belle'17 compatible between HQE and BGL!

Robustness of the HQE expansion up to $1/m_c^2$ [Bordone/MJ/vDyk'19]

Testing FFs by comparing to data and fits in BGL parametrization:

- B → D* BGL coefficient ratios from:
 - 1. Data (Belle'17+'18) + weak unitarity (yellow)
 - 2. HQE theory fit 2/1/0 (red)
 - 3. HQE theory fit 3/2/1 (blue)
- Again compatibility of theory with data
- ▶2/1/0 underestimates the uncertainties massively
- ▶ For b_i, c_i ($\rightarrow f, \mathcal{F}_1$) data and theory complementary

Including $ar{\mathcal{B}}_s o \mathcal{D}_s^{(*)}$ Form Factors [Bordone/Gubernari/MJ/vDyk'20]

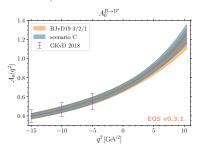
Dispersion relation sums over hadronic intermediate states

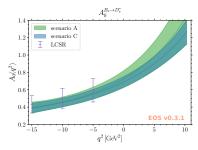
- Includes $B_s D_s^{(*)}$, included via SU(3) + conservative breaking
- ightharpoonup Explicit treatment can improve also $\bar{B} o D^{(*)} \ell
 u$

Experimental progress in $\bar{B}_s \to D_s^{(*)} \ell \nu$:

2 new LHCb measurements [2001.03225, 2003.08453]

Improved theory determinations required, especially for NP

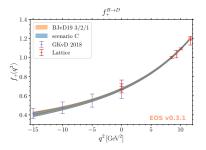

We extend our $1/m_c^2$ analysis by including:


- Available lattice data: $(2\ ar{B_s} o D_s\ \mathsf{FFs}\ (q^2\ \mathsf{dependent}),\ 1\ ar{B_s} o D^*\ \mathsf{FF}\ (\mathsf{only}\ q^2_{\mathrm{max}}))$
- Adaptation of existing QCDSR results [Ligeti/Neubert/Nir'93'94], including SU(3) breaking
- New LCSR results extending [Gubernari+'18] to B_s , including SU(3) breaking
- lacktriangle Fully correlated fit to $\bar{B} o D^{(*)}, \bar{B}_s o D_s^{(*)}$ FFs

Including $\bar{B}_s \to D_s^{(*)}$ Form Factors, Results

We observe the following:

- Theory constraints fitted consistently in an HQE framework
- $\mathcal{O}(1/m_c^2)$ power corrections have $\mathcal{O}(1)$ coefficients
- No indication of sizable SU(3) breaking
- Slight influence of strengthened unitarity bounds
- Improved determination of $\bar{B}_s \to D_s^{(*)}$ FFs



Including $\bar{B}_s o D_s^{(*)}$ Form Factors, Results

We observe the following:

- Theory constraints fitted consistently in an HQE framework
- $\mathcal{O}(1/m_c^2)$ power corrections have $\mathcal{O}(1)$ coefficients
- No indication of sizable SU(3) breaking
- Slight influence of strengthened unitarity bounds
- Improved determination of $\bar{B}_s \to D_s^{(*)}$ FFs

Including $\bar{B}_s \to D_s^{(*)}$ Form Factors, Results

We observe the following:

- Theory constraints fitted consistently in an HQE framework
- $\mathcal{O}(1/m_c^2)$ power corrections have $\mathcal{O}(1)$ coefficients
- No indication of sizable SU(3) breaking
- Slight influence of strengthened unitarity bounds
- Improved determination of $ar{B}_s o D_s^{(*)}$ FFs

Theory-only predictions:

$$R(D) = 0.2989(32)$$
 $R(D^*) = 0.2472(50)$
 $R(D_s) = 0.2970(34)$ $R(D_s^*) = 0.2450(82)$

Theory+Experiment (Belle'17) predictions:

$$R(D) = 0.2981(29)$$
 $R(D^*) = 0.2504(26)$
 $R(D_s) = 0.2971(34)$ $R(D_s^*) = 0.2472(77)$

BSM fits in $b \to c\ell\nu$: Experimental analyses used

Decay	Observable	Experiment	Comment	Year
$B o D(e,\mu) u$	BR	BaBar	global fit	2008
$B o D\ell u$	$\frac{d\Gamma}{dw}$	BaBar	hadronic tag	2009
$ extbf{\textit{B}} o extbf{\textit{D}}(extbf{\textit{e}}, \mu) u$	<u>dΓ</u> dw <u>dΓ</u> dw	Belle	hadronic tag	2015
$B o D^*(e,\mu) u$	BR	BaBar	global fit	2008
$B o D^*\ell u$	BR	BaBar	hadronic tag	2007
$B o D^*\ell u$	BR	BaBar	untagged B^0	2007
$B o D^*\ell u$	BR	BaBar	untagged B^\pm	2007
$ extstyle{B} o extstyle{D}^*(e,\mu) u$	$\frac{d\Gamma_{L,T}}{dw}$	Belle	untagged	2010
$B \to D^* \ell \nu$	$\frac{d\Gamma}{d(w,\cos\theta_V,\cos\theta_I,\phi)}$	Belle	hadronic tag	2017

Different categories of data:

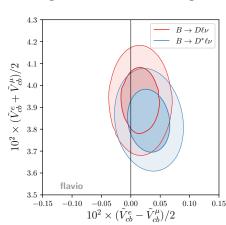
- Only total rates vs. differential distributions
- e, μ -averaged vs. individual measurements
- Correlation matrices given or not
- Sometimes presentation prevents use in non-universal scenarios
- Recent Belle analyses (mostly) exemplary $\stackrel{\smile}{\smile}$

BSM fits in $b \to c\ell\nu$: $\mathcal{O}_{V_{\ell}}$ [MJ/Straub'18]

As a crosscheck, produce SM values (using data from HEPdata): $AB \rightarrow D$ (22.5 + 2.2)12-3

$$V_{cb}^{B\to D} = (39.6 \pm 0.9)10^{-3}$$
 $V_{cb}^{B\to D^*} = (39.0 \pm 0.7)10^{-3}$

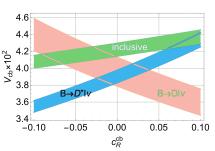
low compared to BGL analyses, compatible with recent results

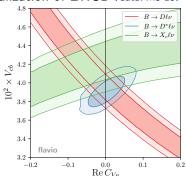

NP in
$$\mathcal{O}_{V_L}^{\ell\ell'}$$
: can be absorbed via $\tilde{V}_{cb}^\ell = V_{cb} \Big[|1 + C_{V_L}^\ell|^2 + \sum_{\ell' \neq \ell} |C_{V_L}^{\ell\ell'}|^2 \Big]^{1/2}$

Only subset of data usable $B \to D, D^*$ in agreement No sign of LFNU

• constrained to be \lesssim % \times V_{cb}

In the following:


- ullet e and μ analyzed separately
- ▶ Usable in different contexts
- Full FF constraints used
- Plots created with flavio
- + independently double-checked
- Open source, adaptable



Right-handed vector currents [MJ/Straub'18]

Usual suspect for tension inclusive vs. exclusive [e.g. Voloshin'97] SMEFT: $C_{V_p}^{\ell\ell'}$ is lepton-flavour-universal [Cirigliano+'10,Catà/MJ'15]

- All available data can be used in SMEFT context
- ▶ Violation could signal non-linear realization of EWSB [Catà/MJ'15]

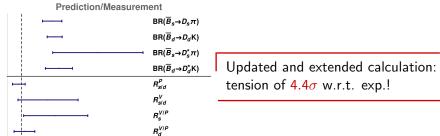
[Plot: updated from Crivellin/Pokorski'14]

Impact of differential distributions:

 V_{cb} and C_{V_R} can be determined individually in $B \to D^*$

- \blacktriangleright Tension smaller, but is not improved by C_{V_R}
- lacktriangledown in SMEFT cannot explain b o c au
 u data

A puzzle in non-leptonic $b \rightarrow c$ transitions


[Bordone/Gubernari/Huber/MJ/vDyk'20]

FFs also of central importance in non-leptonic decays:

- Complicated in general, $B o M_1 M_2$ dynamics
- Simplest cases: $ar{B}_d o D_d^{(*)} ar{K}$ and $ar{B}_s o D_s^{(*)} \pi$ (5 diff. quarks)
 - lacktriangle Colour-allowed tree, $1/m_b^0 @ \mathcal{O}(\alpha_s^2)$ [Huber+'16] , factorizes at $1/m_b$
 - lacktriangle Amplitudes dominantly $\sim ar{B}_q o D_q^{(*)}$ FFs

2.

lacktriangle Used to determine f_s/f_d at hadron colliders [Fleischer+'11]

Interpretation

- Large effect, $\sim -30\%$ for BRs
- Ratios of branching ratios ok
- Our estimate of $\mathcal{O}(1/m_b)$ contributions could be wrong • Requires factor of 500, effectively $\mathcal{O}(1/m_b) \to \mathcal{O}(1)$
- Experimental data consistent (few absolute BRs measured)
 - large BR, simple to measure
- QCDf uncertainty $\mathcal{O}(1/m_b^2, \alpha_s^3)$
 - ▶ Much smaller than the observed effect
- NP? $\Delta_P \sim \Delta_V \sim -20\%$ possible
 - Surprising, affects e.g. lifetimes
 - Not easy to avoid collider constraints [Iguro/Kitahara'20]

Whatever the solution, we will learn something important!

Conclusions

- $b \rightarrow c$ transitions remain an exciting topic to study
- Several tensions to understand
- Focus here was mostly on FF determinations
 - For BSM analyses, theory determination of FFs required!
 - Previous assumptions (→ CLN) contradicted by lattice data
 - First analysis at $1/m_c^2$ provides all FFs
 - ▶ Combines unitarity, lattice, LCSR, QCDSR
 - $ightharpoonup V_{cb}$ puzzle much reduced, $R(D^*)$ slightly lower
 - Conservative uncertainty estimates important
 - ▶ Higher-order contributions have to be accounted for
 - $b \to c \ell \nu$: strong constraints, qualitative progress for V_R
 - New discrepancy in non-leptonic decays
 - Requires significant revision of our understanding
 - ▶ BSM physics possible explanation

Exciting times ahead in $b \rightarrow c$ transitions!