
Gravitational instantons and 
anomalous chiral symmetry 
breaking

Yu Hamada (Kyoto Univ.)

w/ 
Jan M. Pawlowski (Heidelberg U.) 
Masatoshi Yamada (Heidelberg U.)
Seminar at Nagoya Univ. E-lab  (10 Feb. 2021)

Based on [arXiv:2009.08728]

1



Higgs discovery
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Problems in SM

• Dark matter 

• Cosmological constant 

• masses of neutrinos 

• Baryon asymmetry in universe 

• Quantum gravity
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• masses of neutrinos 

• Baryon asymmetry in universe 

• Quantum gravity

3

→ (Einstein) gravity is not renormalizable 
→ need quantum gravity → string theory!

Other possibilities?



What's renormalizability?

• some textbooks say: 
If all UV divergences in Feynman diagrams are absorbed by a 
finite number of parameters in the theory, then the theory is 
renormalizable.

4

∼ δλ1−loop ϕ4

(counter term)

(ex.)　ℒ = 1
2 (∂μϕ)2 − λ

4! ϕ4

• non-renormalizability means: 
need infinite number of parameters to absorb them 
→ The theory has no predictability.

But, this is just a "perturbative renormalizability".



Asymptotic safety
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[S. Weinberg, ’80]

• Recently, a possibility has been pointed out that gravity is 
asymptotically safe and is a consistent QFT. 

→Asymptotic safety scenario of quantum gravity

gg

g*

k k
asymptotic freedom asymptotic safety

• A theory that has a non-trivial RG fixed pt at 
UV is non-perturbatively renormalizable.  
→ Asymptotic safety

(e.g. QCD ) (e.g. non-linear  models in 3d)σ
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Figure 3: Left panel: The beta functions �g = 2g � 2g2 and �y = �g y + 2y3 feature a fixed point at
g = 1, y = 1/

p
2 that has one UV attractive and one IR attractive direction. The UV critical surface is

indicated in green, the IR critical surface in red. The RG flow towards the IR is attracted towards the
UV critical surface, such that the relation between g and y that parameterizes the UV critical surface is
approximately realized also for trajectories (in purple) that start o↵ the UV critical surface. Right panel:
The flow described by �g = 2g � 2g2 and �g2 = �2g2 + 2g22 features a fixed point at g = g2 = 1, which
is IR attractive in g2 and where the UV critical surface has no curvature. Therefore g2(k) = 1 for the
trajectories emanating from this fixed point.

determined by the underlying fundamental model at k = kUV. It they lie close to or on the IR-critical

surface of a fixed point, the flow is attracted towards the fixed point along its IR-attractive directions. The
flow is actually driven towards the UV-critical surface, cf. purple trajectories in Fig. 3. Trajectories can even
spend a large amount of RG “time” close to the fixed point. At ktrans < kUV the e↵ect of the IR-repulsive
directions kicks in and the flow is driven away from the fixed point along its IR-repulsive directions. This
trajectory will result in IR-values of couplings close to those of a “true” fixed-point trajectory, cf. Fig. 3,
see [13]. The above is nothing but a detailed account of how a fixed point generates IR universality. Thus,
asymptotically safe fixed points could generate universal IR predictions, even in the presence of kUV.

2.4 Mechanisms for and selected examples of asymptotic safety

A special case of an RG fixed point is that of an asymptotically free one. To generate it, antiscreening
contributions have to dominate in the beta function of the respective coupling. In contrast, asymptotic
safety is generated by several di↵erent mechanisms and can be realized both in the perturbative and the
nonperturbative regime, i.e., with near-Gaussian or far-from-Gaussian critical exponents. As a second key
di↵erence, an interacting fixed point allows to combine finite, predictable IR values of couplings with UV
completeness. For the free fixed point, finite IR values typically require the corresponding coupling to be
an IR repulsive direction, i.e., relevant. This negates the possibility to predict the value of the coupling
which remains a free parameter based on the free fixed point alone. (Of course, an interacting fixed point
can dominate the flow in the IR, at which the coupling in question could be IR attractive. In this case it
is again the universality class of the interacting fixed point which provides a prediction for a finite value of
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• eg.) Einstein-Hilbert truncation: 

Evidence of asymptotically safe gravity
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• Fixed pt. still exists even when other operators such as 
 are included.Rn, RμνRμν, …

→ renormalizable QFT  for gravity?

[Reuter ’98] [Souma ’99]

Γk = 1
16πG(k) ∫ d4x g(R − 2Λ(k)) [arXiv:1709.03696]
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Fig. 1 Beta functions and the corresponding running for a UV attractive free/interacting
fixed point (lower/upper panels). As the fixed points are UV attractive, the value of the
coupling at one reference scale is an initial condition that can be chosen freely. Upper
panels: beta function and scale dependence of the Newton coupling according to Eq. (20).

the scaling of couplings is determined by the sum of canonical scaling and
quantum scaling which is a consequence of loop e↵ects. In fact, a fixed point
can arise from a balance between canonical and quantum scaling, as

�gi = �dḡi gi + ⌘i(gi), (2)

where ⌘i is an anomalous scaling dimension that arises as a consequence of
quantum fluctuations. An interacting fixed point lies at

g⇤i = ⌘i/dḡi . (3)

For instance, in d = 4 � ✏, the �4�4 theory has a fixed point at �⇤
4

=
16⇡2✏/3, the Wilson-Fisher fixed point [7] playing an important role in sta-
tistical physics. In that setting, interacting fixed points encode the scaling
exponents near a continuous (second or higher order) phase transition, where
scale invariance is due to a diverging correlation length at criticality.

QFTs live in theory space, which is the infinite-dimensional space of all
couplings that are compatible with the symmetries of the model. Asymptotic
safety/freedom is the existence of a fixed point in this space, i.e., for a model
to become asymptotically safe, all couplings have to reach a scale-invariant
fixed point. Thus, determining whether a model can become asymptotically
safe/free, requires us to explore the RG flow of all infinitely many couplings.
On the other hand, in perturbatively renormalizable models with asymptotic
freedom one typically does not think about higher-order couplings, but restrict
the setting to the perturbatively renormalizable ones, thus seemingly working

g(k)

g*

Mpl

g(k) ≡ Gk2

• No UV divergence

∂tΓk = 1
2 Tr [(Γ(2)

k + Rk)
−1

∂tRk]
• Solve RG equation (Wetterich eq.): 

 : cutoff functionRkt ≡ log k



Open problems

• These analysis are done in truncated parameter space  
　→ must consider an RG flow in infinite-dimensional parameter space 

• Higher derivative terms necessarily appear → unitarity? 

• Based on Euclidean space (Wick rotation is not justified in gravity) 

• How to investigate dynamics of quantum spacetime？ 

　(Black hole entropy, singularity, emergence of spacetime？) 

• Weak gravity conjecture?
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Phenomenological implication?
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• Gravity is strong coupling for  k ≳ Mpl

• could cause chiral symmetry breaking 
of fermions like QCD?

→ If so, all fermions acquire dynamical masses  

→ inconsistent with light fermions in our world 
→ phenomenologically exclude asymptotic safety scenario

∼ Mpl

Gravitational instantons can trigger chiral sym. breaking!

⇒ ⟨ψ̄ψ⟩ ≠ 0

This talk:

[Eichhorn-Gies, ’11] [Meibohm-Pawlowski, ’16]
[Eichhorn-Lippoldt, ’16]

[arXiv:1709.03696]
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Fig. 1 Beta functions and the corresponding running for a UV attractive free/interacting
fixed point (lower/upper panels). As the fixed points are UV attractive, the value of the
coupling at one reference scale is an initial condition that can be chosen freely. Upper
panels: beta function and scale dependence of the Newton coupling according to Eq. (20).

the scaling of couplings is determined by the sum of canonical scaling and
quantum scaling which is a consequence of loop e↵ects. In fact, a fixed point
can arise from a balance between canonical and quantum scaling, as

�gi = �dḡi gi + ⌘i(gi), (2)

where ⌘i is an anomalous scaling dimension that arises as a consequence of
quantum fluctuations. An interacting fixed point lies at

g⇤i = ⌘i/dḡi . (3)

For instance, in d = 4 � ✏, the �4�4 theory has a fixed point at �⇤
4

=
16⇡2✏/3, the Wilson-Fisher fixed point [7] playing an important role in sta-
tistical physics. In that setting, interacting fixed points encode the scaling
exponents near a continuous (second or higher order) phase transition, where
scale invariance is due to a diverging correlation length at criticality.

QFTs live in theory space, which is the infinite-dimensional space of all
couplings that are compatible with the symmetries of the model. Asymptotic
safety/freedom is the existence of a fixed point in this space, i.e., for a model
to become asymptotically safe, all couplings have to reach a scale-invariant
fixed point. Thus, determining whether a model can become asymptotically
safe/free, requires us to explore the RG flow of all infinitely many couplings.
On the other hand, in perturbatively renormalizable models with asymptotic
freedom one typically does not think about higher-order couplings, but restrict
the setting to the perturbatively renormalizable ones, thus seemingly working

g(k)

g*

[Eichhorn, ’12]
[Eichhorn-Held, ’17]



Outline

• Introduction 

• Gravitational instanton 

• Chiral sym. breaking induced by grav. 
instanton 

• Summary
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Gravitational instanton
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Gravitational instanton

• Gravity is a gauge theory of local Lorentz sym: SO(4) ≃ SU(2) × SU(2)

11

γμ ≡ γaeμ
a

σab ≡ i
4 [γa, γb]

• instanton-like configuration with winding # for one  sector 
　→gravitational instanton

SU(2)

analogue of Yang-Mills instanton

ℒ ⊃ ψ̄γμ (∂μ − i
2 σabωab

μ ) ψ

Spin connection  

~  gauge fieldSO(4)

• self-dual curvature:  → Ricci flat:  
→ solution to vacuum Einstein eq.

R̃μν = ± Rμν Rμν = 0



Example of grav. instanton

• Eguchi-Hanson metric 

• Taub-NUT metric 

• K3-surface (Calabi-Yau manifold) 

    → compact and closed manifold 

　→ In path integral, it appears as a fluctuation around flat space:

12

→ not considered in this talk

K3

worm-hole like 
 throat

flat spacetime

ρ

[Hebecker-Henkenjohann 1906.07728]

[Hawking ’76]
[Eguchi-Hanson ’78]



’t Hooft vertex

• axial anomaly of fermions :  
→ Grav. instanton induces an effective vertex called ’t Hooft vertex.

⟨∂μJA
μ ⟩ ∼ RR̃

13

K3

worm-hole like 
 throat

flat spacetime

ρ

flat spacetime

∼ 0tH

0tH = λtH det
st

ψ̄s
1 − γ5

2 ψt + (h . c.)

This is not induced by Taub-NUT, Eguchi-Hanson metrics.

[’t Hooft  ’86]

  operatorU(1)A

(similarly to QCD instanton)



’t Hooft vertex and asymptotically safe gravity
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UV (  ) : strong (scale invariant)k ≫ Mpl

IR (  ) : exponentially suppressk ≪ Mpl

ρ ∼ k−1

What does this affect？→ causes chiral sym. breaking:  ⟨ψ̄ ψ⟩ ≠ 0

• dim. analysis based on the dilute gas approx.

[arXiv:1709.03696]
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Fig. 1 Beta functions and the corresponding running for a UV attractive free/interacting
fixed point (lower/upper panels). As the fixed points are UV attractive, the value of the
coupling at one reference scale is an initial condition that can be chosen freely. Upper
panels: beta function and scale dependence of the Newton coupling according to Eq. (20).

the scaling of couplings is determined by the sum of canonical scaling and
quantum scaling which is a consequence of loop e↵ects. In fact, a fixed point
can arise from a balance between canonical and quantum scaling, as

�gi = �dḡi gi + ⌘i(gi), (2)

where ⌘i is an anomalous scaling dimension that arises as a consequence of
quantum fluctuations. An interacting fixed point lies at

g⇤i = ⌘i/dḡi . (3)

For instance, in d = 4 � ✏, the �4�4 theory has a fixed point at �⇤
4

=
16⇡2✏/3, the Wilson-Fisher fixed point [7] playing an important role in sta-
tistical physics. In that setting, interacting fixed points encode the scaling
exponents near a continuous (second or higher order) phase transition, where
scale invariance is due to a diverging correlation length at criticality.

QFTs live in theory space, which is the infinite-dimensional space of all
couplings that are compatible with the symmetries of the model. Asymptotic
safety/freedom is the existence of a fixed point in this space, i.e., for a model
to become asymptotically safe, all couplings have to reach a scale-invariant
fixed point. Thus, determining whether a model can become asymptotically
safe/free, requires us to explore the RG flow of all infinitely many couplings.
On the other hand, in perturbatively renormalizable models with asymptotic
freedom one typically does not think about higher-order couplings, but restrict
the setting to the perturbatively renormalizable ones, thus seemingly working

g(k)

g*

⇒ λtH(k) ∼ k−2e−Sinst.

instanton action: Sinst. ≃ Swormhole ≃ 1
gN(k)



Outline

• Introduction to asymptotic safety of gravity 

• Gravitational instanton 

• Chiral symmetry breaking induced by grav. 
instanton 

• Summary
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Chiral sym. breaking 
induced by grav. instanton
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Nambu-Jona-Lasinio model

• 2-flavor NJL model + gluon and gravity

17

Γk = ∫ d4x g [ψ̄i∇ψ + λqℒq + λtHℒtH]

+ 1
16πG ∫ d4x g R + 1

4g2s ∫ d4x g (Fa
μν)2

ℒtH = 1
2 det

st
ψ̄s

1 − γ5
2 ψt + (h . c.)

ℒq = (ψ̄ ψ)2 − (ψ̄γ5σaψ)2
 channel :σ − π

• RG analysis for running coupling: λtH, λq, gN, gs

• global  symmetry SU(2)L × SU(2)R

’t Hooft vertex :



Chiral sym breaking =  divergence of  λq

• Bosonization :

18

V(ϕ) = m2ϕ2 + ⋯ m2 = 1
λq

2nd order phase transition -symmetricχ  -breakingχ
[Yamada-san's slide]

λq (ψ̄ ψ)2 ϕ

• In NJL model, Chiral sym. breaking =     at IRλq → ∞

ϕ ∼ ψ̄ψ

⟨ϕ⟩ = 0 ⟨ϕ⟩ = 0 ⟨ϕ⟩ ≠ 0



RG flow eq. for four-fermion couplings

• RGE in the absence of grav. instantons:

19

∂tΓk = 1
2 Tr [(Γ(2)

k + Rk)
−1

∂tRk]
• Functional renormalization group (Wetterich equation): 

∂tλ̄q = 2λ̄q − 7
2π2 λ̄2

q − 8
π2 (λ̄q + λ̄tH)λ̄tH + ⋯

∂tλ̄top = 2λ̄tH + 13
3π2 λ̄2

tH + 1
6π2 (4λ̄tH + λ̄q) λ̄q + ⋯

dim. less couplings: λ̄q ≡ k2λq , λ̄tH ≡ k2λtH

 : cutoff functionRk

We have omitted contributions from simple graviton and gluon exchanges.

[Braun-Leonhardt-Pospiech '18]
[Eichhorn-Gies '11]

t ≡ log k



RG flow of four-fermion couplings
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• It is difficult to derive RG eq. in the presence of grav. instantons. 
→ write down naive RG eq. using free parameters

 : free parametersγ(i)

+γ(1) βgN

g2
N

exp (− 1
gN ) + γ(2) λ̄tH exp (− 1

gN )

∂tλ̄q = 2λ̄q − 7
2π2 λ̄2

q − 8
π2 (λ̄q + λ̄tH)λ̄tH

∂tλ̄tH = 2λ̄tH + 13
3π2 λ̄2

tH + 1
6π2 (4λ̄tH + λ̄q) λ̄q

multiplicativeadditive

single inst. ∼ exp (− 1
gN(k) )

∂t



Fixed pt. annihilation
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+γ(1) βgN

g2
N

exp (− 1
gN ) + γ(2) λ̄tH exp (− 1

gN )

∂tλ̄q = 2λ̄q − 7
2π2 λ̄2

q − 8
π2 (λ̄q + λ̄tH)λ̄tH

∂tλ̄tH = 2λ̄tH + 13
3π2 λ̄2

tH + 1
6π2 (4λ̄tH + λ̄q) λ̄q

multiplicativeadditive

• The former one is large around    → IR fixed pt. disappear!k ∼ Mpl
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Result of the flow
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γ(1) = 30, γ(2) = 1
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•  diverges at  → -sym breaking !λ̄q k ∼ 0(0.1) Mpl χ

1 2 3 4 5 6
-30

-20

-10

0

10

20

Result of the flow γ(1) = 30, γ(2) = 1

λ̄tH



Parameter space

24

• How large free parameters  cause the chiral sym. breaking?γ(i)

• Sym. breaking is universal for  .|γ(1) | ≳ 12

• This region leads to heavy fermions, and hence 
phenomenologically excluded.
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Summary

• Gravity is strong coupling in the asymptotic safety scenario.

25

• Parameters  are calculable in principle 
　→We can constrain UV theories. 
• Probe topological structure of spacetime using matter.

γ(i)
Future works:

• Gravitational instantons induce the ’t Hooft vertex for fermions.

• FRG analysis in NJL-like model 

→ Chiral sym. breaking  occurs for some parameter region.⟨ψ̄ ψ⟩ ≠ 0

• Such parameter space is phenomenologically excluded.



Back up
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Asymptotically safe SM?
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Figure 12: From [355] and [328].
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Figure 13: Both panels: RG flows in an approximation as in Eq. (56), see [354] and [355] for details.
Left panel: Flow of gauge couplings and top and bottom Yukawa with quantum-gravity parameterized by
fg = 9.8 · 10�3 and fy = 1.13 · 10�4 above the Planck scale and fg = 0 = fy below the Planck scale as in
[354]. Right panel: Standard-Model RG flow including running gravitational couplings as in [215] and is
taken from [355].

scale values, one reaches a Higgs mass in the vicinity of the observed value, while the Higgs portal coupling
remains zero at all scales. The first is a prediction [363] put forward before the discovery of the Higgs at
the LHC [6, 7], see also [8]. The second appears to be consistent with the non-detection of a scalar Higgs
portal through direct searches [361, 130].

“Retrodictions” of SM couplings could be a much more generic consequence of quantum gravity than
just of asymptotic safety as discussed in Sec. 2.3.

5.2 Impact of matter on quantum gravity – backreaction matters?

The impact of quantum fluctuations of matter on the gravitational fixed point has been studied in simple
truncations. The corresponding theory space also contains non-minimal matter-curvature couplings, [362,
46, 326, 364, 326].
Matter fields deform the gravitational fixed point in truncations. Adding a small number of matter fields
leads to the continued existence of a viable interacting fixed point. At larger number of matter fields, there
are indications that further extensions of the truncation could be required [365, 367].

Assuming that asymptotic safety in gravity is driven by antiscreening metric fluctuations inducing a

28

[arXiv: 1810.07615]



Renormalization group (Wilsonian)

• Starting from a theory with UV cutoff , let's construct an effective 

theory with energy scale   

→ integrating out only d.o.f. with momentum higher than  

Λ
k

k

28

e−Sk[ϕ] ≡ ∫ 7ϕ|p|>|k| e−SΛ[ϕ]

Sk[ϕ] = ∫ d4x [ 1
2 (∂μϕ)2 − g1(k)

4! ϕ4 − g2(k)
6! ϕ6 + ⋯]

Running coupling constant

• Physics at energy scale  is described by the effective action  :k Sk



Renormalization group flow
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• -dependence of running parameters are expressed by a flow in 
the parameter space.
k

Parameter 
space

g1

g2

⋯
∂tgi(k) = − βi(g(k)) t ≡ − log k

• The flow does not move at a fixed point :  gi = g*i

βi(g*) = 0

flowing-out direction: relevant 
flowing-in direction: irrelevant

(t = 0)(t = eΛ/μ)
IR: k = μ UV: k = Λ



Renormalizability
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Parameter 
space

g1

g2

k = μ

k = Λ

⋯

• Is it possible to take the continuum limit  ( ) 
keeping all parameters finite?

Λ → ∞ eΛ/μ → ∞

βi(g*) = 0

• To do so, tune the parameters at  s.t. the flow passes nearby 
a fixed pt.

k = Λ

At  , the flow is very slow.gi ≃ g*i(t = 0)

(t = eΛ/μ)



Renormalizability
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Parameter 
space

g1

g2

k = μ

k = Λ

⋯

• Is it possible to take the continuum limit  ( ) 
keeping all parameters finite?

Λ → ∞ eΛ/μ → ∞

βi(g*) = 0

• To do so, tune the parameters at  s.t. the flow passes nearby 
a fixed pt.

k = Λ

At  , the flow is very slow.gi ≃ g*i

Renormalized trajectory

(t = 0)

(t = eΛ/μ)



Renormalizability
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Parameter 
space

g1

g2

k = μ

k = Λ

⋯

• Is it possible to take the continuum limit  ( ) 
keeping all parameters finite?

Λ → ∞ eΛ/μ → ∞

βi(g*) = 0

• To do so, tune the parameters at  s.t. the flow passes nearby 
a fixed pt.

k = Λ

At  , the flow is very slow.gi ≃ g*i

• Then, the parameters at  are finite and insensitive to UV 
physics  → This is renormalizability!

k = μ

Renormalized trajectory

(t = 0)

(t = eΛ/μ)



Asymptotic safety
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[S. Weinberg, ’80]

• Recently, a possibility has been pointed out that gravity is 
asymptotically safe and is a consistent QFT. 

→Asymptotic safety scenario of quantum gravity

gg

g*

k k
asymptotic freedom asymptotic safety

• A theory which has a non-trivial RG fixed 
pt. at UV is called asymptotically safe and 
is non-perturbatively renormalizable.

k = μ

k = Λ

βi(g*) = 0

(e.g. QCD ) (e.g. non-linear )σ



’t Hooft vertex and asymptotically safe gravity
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• assume an energy scale  k

λtH ∼ ρ2 exp (− ρ2

G )
G → G(k) = gN(k)/k2ρ → k−1

⇒ λtH(k) ∼ k−2 exp (− 1
gN(k) )

UV (  ) : instantons are active (scale invariant)k ≫ Mpl

IR (  ) : exponentially suppressk ≪ Mpl

ρ

What does this affect？→ causes chiral sym. breaking:  ⟨ψ̄ ψ⟩ ≠ 0

• dim. analysis based on the dilute gas approx.

[arXiv:1709.03696]
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Fig. 1 Beta functions and the corresponding running for a UV attractive free/interacting
fixed point (lower/upper panels). As the fixed points are UV attractive, the value of the
coupling at one reference scale is an initial condition that can be chosen freely. Upper
panels: beta function and scale dependence of the Newton coupling according to Eq. (20).

the scaling of couplings is determined by the sum of canonical scaling and
quantum scaling which is a consequence of loop e↵ects. In fact, a fixed point
can arise from a balance between canonical and quantum scaling, as

�gi = �dḡi gi + ⌘i(gi), (2)

where ⌘i is an anomalous scaling dimension that arises as a consequence of
quantum fluctuations. An interacting fixed point lies at

g⇤i = ⌘i/dḡi . (3)

For instance, in d = 4 � ✏, the �4�4 theory has a fixed point at �⇤
4

=
16⇡2✏/3, the Wilson-Fisher fixed point [7] playing an important role in sta-
tistical physics. In that setting, interacting fixed points encode the scaling
exponents near a continuous (second or higher order) phase transition, where
scale invariance is due to a diverging correlation length at criticality.

QFTs live in theory space, which is the infinite-dimensional space of all
couplings that are compatible with the symmetries of the model. Asymptotic
safety/freedom is the existence of a fixed point in this space, i.e., for a model
to become asymptotically safe, all couplings have to reach a scale-invariant
fixed point. Thus, determining whether a model can become asymptotically
safe/free, requires us to explore the RG flow of all infinitely many couplings.
On the other hand, in perturbatively renormalizable models with asymptotic
freedom one typically does not think about higher-order couplings, but restrict
the setting to the perturbatively renormalizable ones, thus seemingly working

g(k)

g*



Bosonization

33

Z = ∫ 7ψ7ψ̄e−S[ψ,ψ̄] S[ψ, ψ̄] = iψ̄∂ψ + 1
2 λσ [(ψ̄ ψ)2 − (ψ̄γ5σaψ)2]

multiply: 1 = N∫ 7ϕ e− ∫ d4x[ 1
2 m2

ϕ
⃗ϕ 2]

ϕ → ϕ + i
2m2σ

(ψ̄ ψ)

→ S[ψ, ψ̄, ϕ] = ∫ d4x [iψ̄∂ψ + 1
2 m2

σ
⃗ϕ 2 + i

2
ψ̄( ⃗τ ⋅ ⃗ϕ )ψ]

Shift: with m2
σ = 1/λσ

⃗τ = (i, γ5)

EOM:   でもとに戻る⃗ϕ = 1
2m2σ

⃗τ (ψ̄ ψ)

∴ ⟨ |ϕ |⟩ ≠ 0 ⇒ ⟨ψ̄ ψ⟩ ≠ 0  を回す方向がpion: NG mode⃗ϕ


